Abstract

A simple configuration for simultaneous measurement of temperature and strain exploiting a temperature-insensitive birefringent interferometer based on a photonic crystal fiber incorporating an erbium-doped fiber (EDF) is investigated. The transmission peak power of the birefringent interferometer incorporating the EDF is changed by the temperature variation because the amplified spontaneous emission of the EDF strongly depends on temperature. The applied strain changes the peak wavelength of the birefringent interferometer connecting with the EDF, which can make it possible to discriminate concurrent sensitivities like temperature and strain. The temperature and strain sensitivities were 0.04dB/°C and 1.3pm/με, respectively.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  2. K. C. Chuang and C. C. Ma, “Pointwise fiber Bragg grating displacement sensor system for dynamic measurements,” Appl. Opt. 47, 3561-3567 (2008).
    [CrossRef] [PubMed]
  3. Y. G. Han, S. B. Lee, C. S. Kim, Jin U. Kang, U. C. Paek, and Y. Chung, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Express 11, 476-481 (2003).
    [CrossRef] [PubMed]
  4. J. Jung, H. Nam, J. H. Lee, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature using a single fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38, 2749-2751 (1999).
    [CrossRef]
  5. E. D. L. Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481-483 (1997).
    [CrossRef] [PubMed]
  6. C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a high birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
    [CrossRef]
  7. D. H. Kim and J. U. Kang, “Analysis of temperature-dependence birefringence of a polarization-maintaining photonic crystal fiber,” Opt. Eng. 46, 0750036/1-0750036/5 (2007).
    [CrossRef]
  8. H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, pp. 2835-2839 (2008).
    [CrossRef] [PubMed]
  9. J. W. Evans, “The birefringence filter,” J. Opt. Soc. Am. 39, 229-242 (1949).
    [CrossRef]
  10. E. Desurvire, Erbium Doped Fiber Amplifier: Principle and Applications. New York: (Wiley, 1994).
  11. S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications,” Opt. Fiber. Technol. 12, 10-19 (2006).
    [CrossRef]
  12. A. H. El-Astal, A. M. Husein, and M. S. Hamada, “The temperature dependency of EDFAs in the 1480 nmpumping configuration,” Opt. Commun. 278, 71-76(2007).
    [CrossRef]
  13. X. Li and W. Zhang, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped tellurite glass,” Physica B 403, 3286-3288 (2008).
    [CrossRef]
  14. W. Huang, X. Wang, Z. Cai, H. Xu, and C. Ye, “A pump power insensitive high stability L-band erbium-doped superfluorescent fiber source,” J. Opt. A.: Pure Appl. Opt. 7, 179-182 (2005).
    [CrossRef]

2008 (3)

2007 (2)

A. H. El-Astal, A. M. Husein, and M. S. Hamada, “The temperature dependency of EDFAs in the 1480 nmpumping configuration,” Opt. Commun. 278, 71-76(2007).
[CrossRef]

D. H. Kim and J. U. Kang, “Analysis of temperature-dependence birefringence of a polarization-maintaining photonic crystal fiber,” Opt. Eng. 46, 0750036/1-0750036/5 (2007).
[CrossRef]

2006 (1)

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications,” Opt. Fiber. Technol. 12, 10-19 (2006).
[CrossRef]

2005 (1)

W. Huang, X. Wang, Z. Cai, H. Xu, and C. Ye, “A pump power insensitive high stability L-band erbium-doped superfluorescent fiber source,” J. Opt. A.: Pure Appl. Opt. 7, 179-182 (2005).
[CrossRef]

2004 (1)

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a high birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

2003 (1)

1999 (1)

1997 (2)

E. D. L. Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop,” Opt. Lett. 22, 481-483 (1997).
[CrossRef] [PubMed]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

1949 (1)

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Baek, S.

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications,” Opt. Fiber. Technol. 12, 10-19 (2006).
[CrossRef]

Cai, Z.

W. Huang, X. Wang, Z. Cai, H. Xu, and C. Ye, “A pump power insensitive high stability L-band erbium-doped superfluorescent fiber source,” J. Opt. A.: Pure Appl. Opt. 7, 179-182 (2005).
[CrossRef]

Chuang, K. C.

Chung, Y.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Demokan, M. S.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a high birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Desurvire, E.

E. Desurvire, Erbium Doped Fiber Amplifier: Principle and Applications. New York: (Wiley, 1994).

Dong, X.

El-Astal, A. H.

A. H. El-Astal, A. M. Husein, and M. S. Hamada, “The temperature dependency of EDFAs in the 1480 nmpumping configuration,” Opt. Commun. 278, 71-76(2007).
[CrossRef]

Evans, J. W.

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Fu, H. Y.

Hamada, M. S.

A. H. El-Astal, A. M. Husein, and M. S. Hamada, “The temperature dependency of EDFAs in the 1480 nmpumping configuration,” Opt. Commun. 278, 71-76(2007).
[CrossRef]

Han, Y. G.

Huang, W.

W. Huang, X. Wang, Z. Cai, H. Xu, and C. Ye, “A pump power insensitive high stability L-band erbium-doped superfluorescent fiber source,” J. Opt. A.: Pure Appl. Opt. 7, 179-182 (2005).
[CrossRef]

Husein, A. M.

A. H. El-Astal, A. M. Husein, and M. S. Hamada, “The temperature dependency of EDFAs in the 1480 nmpumping configuration,” Opt. Commun. 278, 71-76(2007).
[CrossRef]

Jeong, Y.

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications,” Opt. Fiber. Technol. 12, 10-19 (2006).
[CrossRef]

Jin, W.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a high birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Jung, J.

Kang, J. U.

D. H. Kim and J. U. Kang, “Analysis of temperature-dependence birefringence of a polarization-maintaining photonic crystal fiber,” Opt. Eng. 46, 0750036/1-0750036/5 (2007).
[CrossRef]

Kang, Jin U.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Khijwania, S. K.

Kim, C. S.

Kim, D. H.

D. H. Kim and J. U. Kang, “Analysis of temperature-dependence birefringence of a polarization-maintaining photonic crystal fiber,” Opt. Eng. 46, 0750036/1-0750036/5 (2007).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Lee, B.

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications,” Opt. Fiber. Technol. 12, 10-19 (2006).
[CrossRef]

J. Jung, H. Nam, J. H. Lee, N. Park, and B. Lee, “Simultaneous measurement of strain and temperature using a single fiber Bragg grating and an erbium-doped fiber amplifier,” Appl. Opt. 38, 2749-2751 (1999).
[CrossRef]

Lee, J. H.

Lee, S. B.

Li, X.

X. Li and W. Zhang, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped tellurite glass,” Physica B 403, 3286-3288 (2008).
[CrossRef]

Lu, C.

H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, pp. 2835-2839 (2008).
[CrossRef] [PubMed]

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a high birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Ma, C. C.

Monzon, D.

Nam, H.

Nilsson, J.

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications,” Opt. Fiber. Technol. 12, 10-19 (2006).
[CrossRef]

Paek, U. C.

Park, N.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Rosa, E. D. L.

Sahu, J. K.

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications,” Opt. Fiber. Technol. 12, 10-19 (2006).
[CrossRef]

Shao, L. Y.

Starodumov, A. N.

Tam, H. Y.

Wai, P. K. A.

Wang, X.

W. Huang, X. Wang, Z. Cai, H. Xu, and C. Ye, “A pump power insensitive high stability L-band erbium-doped superfluorescent fiber source,” J. Opt. A.: Pure Appl. Opt. 7, 179-182 (2005).
[CrossRef]

Xu, H.

W. Huang, X. Wang, Z. Cai, H. Xu, and C. Ye, “A pump power insensitive high stability L-band erbium-doped superfluorescent fiber source,” J. Opt. A.: Pure Appl. Opt. 7, 179-182 (2005).
[CrossRef]

Yang, X.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a high birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Ye, C.

W. Huang, X. Wang, Z. Cai, H. Xu, and C. Ye, “A pump power insensitive high stability L-band erbium-doped superfluorescent fiber source,” J. Opt. A.: Pure Appl. Opt. 7, 179-182 (2005).
[CrossRef]

Zenteno, L. A.

Zhang, W.

X. Li and W. Zhang, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped tellurite glass,” Physica B 403, 3286-3288 (2008).
[CrossRef]

Zhao, C. L.

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a high birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (1)

C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a high birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
[CrossRef]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

J. Opt. A.: Pure Appl. Opt. (1)

W. Huang, X. Wang, Z. Cai, H. Xu, and C. Ye, “A pump power insensitive high stability L-band erbium-doped superfluorescent fiber source,” J. Opt. A.: Pure Appl. Opt. 7, 179-182 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

A. H. El-Astal, A. M. Husein, and M. S. Hamada, “The temperature dependency of EDFAs in the 1480 nmpumping configuration,” Opt. Commun. 278, 71-76(2007).
[CrossRef]

Opt. Eng. (1)

D. H. Kim and J. U. Kang, “Analysis of temperature-dependence birefringence of a polarization-maintaining photonic crystal fiber,” Opt. Eng. 46, 0750036/1-0750036/5 (2007).
[CrossRef]

Opt. Express (1)

Opt. Fiber. Technol. (1)

S. Baek, Y. Jeong, J. Nilsson, J. K. Sahu, and B. Lee, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped silica fiber for sensor applications,” Opt. Fiber. Technol. 12, 10-19 (2006).
[CrossRef]

Opt. Lett. (1)

Physica B (1)

X. Li and W. Zhang, “Temperature-dependent fluorescence characteristics of an ytterbium-sensitized erbium-doped tellurite glass,” Physica B 403, 3286-3288 (2008).
[CrossRef]

Other (1)

E. Desurvire, Erbium Doped Fiber Amplifier: Principle and Applications. New York: (Wiley, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Proposed sensing scheme for simultaneous measurement of strain and temperature based on a PM-PCF-based birefringent interferometer incorporating an EDF. The SEM image of the cross section of the PM-PCF was shown in the inset.

Fig. 2
Fig. 2

Transmission spectra of the proposed sensor with the applied temperature change.

Fig. 3
Fig. 3

Peak wavelength shift as a function of applied temperature.

Fig. 4
Fig. 4

Transmission peak power change as a function of applied temperature.

Fig. 5
Fig. 5

Transmission spectra of the proposed sensor with the applied strain change.

Fig. 6
Fig. 6

Peak wavelength shift as a function of applied strain.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P ASE = η h v Δ v [ G ( T ) 1 ] ,
Δ ϕ = 2 π λ o ( Δ n PM · L PM + Δ L PM · n PM ) ,
Δ λ = λ ( Δ L PM L PM + Δ n PM n PM ) = λ ε ( 1 + ρ E ) ,

Metrics