Abstract

A multivariable and multiobjective organic light emitting diode (OLED) design and optimization procedure is presented that produces a microcavity OLED with optimal optical and electrical characteristics. We propose here a design procedure that splits the design process into two design stages where each stage can be optimized independently. In the first stage we design the OLED with optimal electrical and optical performance, where the mirrors are specified by their optimal spectral reflectivity, transmissivity, absorptance, and the phase shift on reflection. In the second stage we synthesize the top and the bottom multilayer mirrors with a minimal number of layers that satisfy the required optimal spectral dependencies determined in the first part of the design process. As a case study we present an optimized design for a top-emitting OLED with a simple bilayered cavity consisting of N, N-di(naphthalene-1-yl)-N, N-diphenylbenzidine (NPB) as the hole transport layer and tris(8-hydroxyquinoline)aluminium (Alq3) as the electron transport layer. Conventional devices with an ITOLiF/Al electrode pair and a AgAg electrode pair are used as reference devices to benchmark the performance of our design. Electrical simulations using the drift-diffusion model and optical simulations employing the integrated dipole antenna approach are implemented to test the performance of the devices. The optimized device shows improved optical and electrical performance when compared with the reference devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Brutting, S. Berleb, and A. G. Muckl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2, 1-36 (2001).
    [CrossRef]
  2. L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. R . 39, 143-222 (2002).
    [CrossRef]
  3. J. N. Bardsley, “International OLED technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 10, 3-9 (2004).
    [CrossRef]
  4. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913-915 (1987).
    [CrossRef]
  5. B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723-731 (2003).
    [CrossRef]
  6. C. C. Lee, M. Y. Chang, Y. D. Jong, T. W. Huang, C. S. Chu, and Y. Chang, “Numerical simulation of electrical and optical characteristics of multilayer organic light-emitting devices,” Jpn. J. Appl. Phys. 43, 7560-7565 (2004).
    [CrossRef]
  7. M. A. Webster, J. Auld, S. J. Martin, and A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300-309 (2004).
    [CrossRef]
  8. K. Neyts, P. De Visschere, D. K. Fork, and G. B. Anderson, “Semitransparent metal or distributed Bragg reflector for wide-viewing-angle organic light-emitting-diode microcavities,” J. Opt. Soc. Am. B 17, 114-119 (2000).
    [CrossRef]
  9. K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A 15, 962-971 (1998).
    [CrossRef]
  10. H. Riel, S. Karg, T. Beierlein, W. Rie, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: an experimental and theoretical study,” J. Appl. Phys. 94, 5290-5296 (2003).
    [CrossRef]
  11. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction--part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612-1631 (1998).
    [CrossRef]
  12. L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett. 78, 544-546 (2001).
    [CrossRef]
  13. C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode,” Appl. Phys. Lett. 83, 5127-5129 (2003).
    [CrossRef]
  14. Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, “An efficient organic light-emitting diode with silver electrodes,” Chem. Phys. Lett. 386, 128-131 (2004).
    [CrossRef]
  15. S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Org. Electron. 3, 129-141(2002).
    [CrossRef]
  16. C. D. J. Blades and A. Walker, “Simulation of organic light-emitting diodes,” Synth. Met. 111, 335-340 (2000).
    [CrossRef]
  17. ATLAS User's Manual--Device Simulation Software (SILVACO International, 2005).
  18. A. H. Macleod, Thin Film Optical Filters (Institute of Physics, 2000).
  19. W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22, 3030-3038 (1980).
    [CrossRef]
  20. W. Lukosz, “Light emission by multipole sources in thin layers. I. Radiation patterns of electric and magnetic dipoles,” J. Opt. Soc. Am. 71, 744-754 (1981).
    [CrossRef]
  21. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67, 1607-1615 (1977).
    [CrossRef]
  22. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271-5283 (1998).
    [CrossRef]
  23. J. Chan, A. W. Lu, C. H. Cheung, A. M. C. Ng, A. B. Djurisic, Y. T. Yeow, and A. D. Rakic, “Cavity design and optimization for organic microcavity OLEDs,” Proc. SPIE 6038, 603824-1(2006).
    [CrossRef]
  24. A. B. Djurisic, A. D. Rakic, and J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797-4803(1997).
    [CrossRef]
  25. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41, 3978-3987 (2002).
    [CrossRef] [PubMed]
  26. C. L. Mitsas and D. I. Siapkas, “Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates,” Appl. Opt. 34, 1678-1683(1995).
    [CrossRef] [PubMed]
  27. A. B. Djurisic and A. D. Rakic, “Organic microcavity light-emitting diodes with metal mirrors: dependence of the emission wavelength on the viewing angle,” Appl. Opt. 41, 7650-7656 (2002).
    [CrossRef]
  28. A. B. Djurisic and A. D. Rakic, “Asymmetric Bragg mirrors for the reduction of emission wavelength dependence on the viewing angle in organic microcavity light emitting diodes,” Opt. Commun. 236, 303-311 (2004).
    [CrossRef]
  29. DeBell Design, OptiLayer User's Guide for Windows '95/'98 & NT/4.0 (DeBell Design, 1997).
  30. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493-5508(1996).
    [CrossRef] [PubMed]

2006

J. Chan, A. W. Lu, C. H. Cheung, A. M. C. Ng, A. B. Djurisic, Y. T. Yeow, and A. D. Rakic, “Cavity design and optimization for organic microcavity OLEDs,” Proc. SPIE 6038, 603824-1(2006).
[CrossRef]

2004

A. B. Djurisic and A. D. Rakic, “Asymmetric Bragg mirrors for the reduction of emission wavelength dependence on the viewing angle in organic microcavity light emitting diodes,” Opt. Commun. 236, 303-311 (2004).
[CrossRef]

J. N. Bardsley, “International OLED technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 10, 3-9 (2004).
[CrossRef]

C. C. Lee, M. Y. Chang, Y. D. Jong, T. W. Huang, C. S. Chu, and Y. Chang, “Numerical simulation of electrical and optical characteristics of multilayer organic light-emitting devices,” Jpn. J. Appl. Phys. 43, 7560-7565 (2004).
[CrossRef]

M. A. Webster, J. Auld, S. J. Martin, and A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300-309 (2004).
[CrossRef]

Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, “An efficient organic light-emitting diode with silver electrodes,” Chem. Phys. Lett. 386, 128-131 (2004).
[CrossRef]

2003

H. Riel, S. Karg, T. Beierlein, W. Rie, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: an experimental and theoretical study,” J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723-731 (2003).
[CrossRef]

C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode,” Appl. Phys. Lett. 83, 5127-5129 (2003).
[CrossRef]

2002

C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41, 3978-3987 (2002).
[CrossRef] [PubMed]

A. B. Djurisic and A. D. Rakic, “Organic microcavity light-emitting diodes with metal mirrors: dependence of the emission wavelength on the viewing angle,” Appl. Opt. 41, 7650-7656 (2002).
[CrossRef]

S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Org. Electron. 3, 129-141(2002).
[CrossRef]

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. R . 39, 143-222 (2002).
[CrossRef]

2001

W. Brutting, S. Berleb, and A. G. Muckl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2, 1-36 (2001).
[CrossRef]

L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett. 78, 544-546 (2001).
[CrossRef]

2000

1998

1997

A. B. Djurisic, A. D. Rakic, and J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797-4803(1997).
[CrossRef]

1996

1995

1987

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913-915 (1987).
[CrossRef]

1981

1980

W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22, 3030-3038 (1980).
[CrossRef]

1977

Anderson, G. B.

Auld, J.

M. A. Webster, J. Auld, S. J. Martin, and A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300-309 (2004).
[CrossRef]

Bardsley, J. N.

J. N. Bardsley, “International OLED technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 10, 3-9 (2004).
[CrossRef]

Beierlein, T.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723-731 (2003).
[CrossRef]

H. Riel, S. Karg, T. Beierlein, W. Rie, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: an experimental and theoretical study,” J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

Benisty, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction--part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

Berleb, S.

W. Brutting, S. Berleb, and A. G. Muckl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2, 1-36 (2001).
[CrossRef]

Blades, C. D. J.

C. D. J. Blades and A. Walker, “Simulation of organic light-emitting diodes,” Synth. Met. 111, 335-340 (2000).
[CrossRef]

Brutting, W.

W. Brutting, S. Berleb, and A. G. Muckl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2, 1-36 (2001).
[CrossRef]

Chan, J.

J. Chan, A. W. Lu, C. H. Cheung, A. M. C. Ng, A. B. Djurisic, Y. T. Yeow, and A. D. Rakic, “Cavity design and optimization for organic microcavity OLEDs,” Proc. SPIE 6038, 603824-1(2006).
[CrossRef]

Chang, M. Y.

C. C. Lee, M. Y. Chang, Y. D. Jong, T. W. Huang, C. S. Chu, and Y. Chang, “Numerical simulation of electrical and optical characteristics of multilayer organic light-emitting devices,” Jpn. J. Appl. Phys. 43, 7560-7565 (2004).
[CrossRef]

Chang, Y.

C. C. Lee, M. Y. Chang, Y. D. Jong, T. W. Huang, C. S. Chu, and Y. Chang, “Numerical simulation of electrical and optical characteristics of multilayer organic light-emitting devices,” Jpn. J. Appl. Phys. 43, 7560-7565 (2004).
[CrossRef]

Chen, C. H.

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. R . 39, 143-222 (2002).
[CrossRef]

Chen, C. W.

C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode,” Appl. Phys. Lett. 83, 5127-5129 (2003).
[CrossRef]

Cheung, C. H.

J. Chan, A. W. Lu, C. H. Cheung, A. M. C. Ng, A. B. Djurisic, Y. T. Yeow, and A. D. Rakic, “Cavity design and optimization for organic microcavity OLEDs,” Proc. SPIE 6038, 603824-1(2006).
[CrossRef]

Chiang, H. H.

C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode,” Appl. Phys. Lett. 83, 5127-5129 (2003).
[CrossRef]

Chu, C. S.

C. C. Lee, M. Y. Chang, Y. D. Jong, T. W. Huang, C. S. Chu, and Y. Chang, “Numerical simulation of electrical and optical characteristics of multilayer organic light-emitting devices,” Jpn. J. Appl. Phys. 43, 7560-7565 (2004).
[CrossRef]

De Neve, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction--part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

De Visschere, P.

DeBell, G. W.

Djurisic, A. B.

J. Chan, A. W. Lu, C. H. Cheung, A. M. C. Ng, A. B. Djurisic, Y. T. Yeow, and A. D. Rakic, “Cavity design and optimization for organic microcavity OLEDs,” Proc. SPIE 6038, 603824-1(2006).
[CrossRef]

A. B. Djurisic and A. D. Rakic, “Asymmetric Bragg mirrors for the reduction of emission wavelength dependence on the viewing angle in organic microcavity light emitting diodes,” Opt. Commun. 236, 303-311 (2004).
[CrossRef]

A. B. Djurisic and A. D. Rakic, “Organic microcavity light-emitting diodes with metal mirrors: dependence of the emission wavelength on the viewing angle,” Appl. Opt. 41, 7650-7656 (2002).
[CrossRef]

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271-5283 (1998).
[CrossRef]

A. B. Djurisic, A. D. Rakic, and J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797-4803(1997).
[CrossRef]

Elazar, J. M.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271-5283 (1998).
[CrossRef]

A. B. Djurisic, A. D. Rakic, and J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797-4803(1997).
[CrossRef]

Fork, D. K.

Hsieh, P. Y.

C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode,” Appl. Phys. Lett. 83, 5127-5129 (2003).
[CrossRef]

Huang, T. W.

C. C. Lee, M. Y. Chang, Y. D. Jong, T. W. Huang, C. S. Chu, and Y. Chang, “Numerical simulation of electrical and optical characteristics of multilayer organic light-emitting devices,” Jpn. J. Appl. Phys. 43, 7560-7565 (2004).
[CrossRef]

Hung, L. S.

Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, “An efficient organic light-emitting diode with silver electrodes,” Chem. Phys. Lett. 386, 128-131 (2004).
[CrossRef]

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. R . 39, 143-222 (2002).
[CrossRef]

L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett. 78, 544-546 (2001).
[CrossRef]

Jong, Y. D.

C. C. Lee, M. Y. Chang, Y. D. Jong, T. W. Huang, C. S. Chu, and Y. Chang, “Numerical simulation of electrical and optical characteristics of multilayer organic light-emitting devices,” Jpn. J. Appl. Phys. 43, 7560-7565 (2004).
[CrossRef]

Karg, S.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723-731 (2003).
[CrossRef]

H. Riel, S. Karg, T. Beierlein, W. Rie, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: an experimental and theoretical study,” J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

Katsidis, C. C.

Kunz, R. E.

Lau, S. S.

Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, “An efficient organic light-emitting diode with silver electrodes,” Chem. Phys. Lett. 386, 128-131 (2004).
[CrossRef]

Lee, C. C.

C. C. Lee, M. Y. Chang, Y. D. Jong, T. W. Huang, C. S. Chu, and Y. Chang, “Numerical simulation of electrical and optical characteristics of multilayer organic light-emitting devices,” Jpn. J. Appl. Phys. 43, 7560-7565 (2004).
[CrossRef]

Li, Y. Q.

Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, “An efficient organic light-emitting diode with silver electrodes,” Chem. Phys. Lett. 386, 128-131 (2004).
[CrossRef]

Lin, C. L.

C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode,” Appl. Phys. Lett. 83, 5127-5129 (2003).
[CrossRef]

Lu, A. W.

J. Chan, A. W. Lu, C. H. Cheung, A. M. C. Ng, A. B. Djurisic, Y. T. Yeow, and A. D. Rakic, “Cavity design and optimization for organic microcavity OLEDs,” Proc. SPIE 6038, 603824-1(2006).
[CrossRef]

Lukosz, W.

Macleod, A. H.

A. H. Macleod, Thin Film Optical Filters (Institute of Physics, 2000).

Madathil, J.

L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett. 78, 544-546 (2001).
[CrossRef]

Majewski, M. L.

Martin, S. J.

M. A. Webster, J. Auld, S. J. Martin, and A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300-309 (2004).
[CrossRef]

S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Org. Electron. 3, 129-141(2002).
[CrossRef]

Mason, M. G.

L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett. 78, 544-546 (2001).
[CrossRef]

Mitsas, C. L.

Muckl, A. G.

W. Brutting, S. Berleb, and A. G. Muckl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2, 1-36 (2001).
[CrossRef]

Neyts, K.

H. Riel, S. Karg, T. Beierlein, W. Rie, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: an experimental and theoretical study,” J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

K. Neyts, P. De Visschere, D. K. Fork, and G. B. Anderson, “Semitransparent metal or distributed Bragg reflector for wide-viewing-angle organic light-emitting-diode microcavities,” J. Opt. Soc. Am. B 17, 114-119 (2000).
[CrossRef]

Neyts, K. A.

Ng, A. M. C.

J. Chan, A. W. Lu, C. H. Cheung, A. M. C. Ng, A. B. Djurisic, Y. T. Yeow, and A. D. Rakic, “Cavity design and optimization for organic microcavity OLEDs,” Proc. SPIE 6038, 603824-1(2006).
[CrossRef]

Rakic, A. D.

J. Chan, A. W. Lu, C. H. Cheung, A. M. C. Ng, A. B. Djurisic, Y. T. Yeow, and A. D. Rakic, “Cavity design and optimization for organic microcavity OLEDs,” Proc. SPIE 6038, 603824-1(2006).
[CrossRef]

A. B. Djurisic and A. D. Rakic, “Asymmetric Bragg mirrors for the reduction of emission wavelength dependence on the viewing angle in organic microcavity light emitting diodes,” Opt. Commun. 236, 303-311 (2004).
[CrossRef]

A. B. Djurisic and A. D. Rakic, “Organic microcavity light-emitting diodes with metal mirrors: dependence of the emission wavelength on the viewing angle,” Appl. Opt. 41, 7650-7656 (2002).
[CrossRef]

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271-5283 (1998).
[CrossRef]

A. B. Djurisic, A. D. Rakic, and J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797-4803(1997).
[CrossRef]

Raychaudhuri, P.

L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett. 78, 544-546 (2001).
[CrossRef]

Rie, W.

H. Riel, S. Karg, T. Beierlein, W. Rie, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: an experimental and theoretical study,” J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

Riel, H.

H. Riel, S. Karg, T. Beierlein, W. Rie, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: an experimental and theoretical study,” J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723-731 (2003).
[CrossRef]

Riess, W.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723-731 (2003).
[CrossRef]

Ruhstaller, B.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723-731 (2003).
[CrossRef]

Scott, J. C.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723-731 (2003).
[CrossRef]

Siapkas, D. I.

Tang, C. W.

L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett. 78, 544-546 (2001).
[CrossRef]

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913-915 (1987).
[CrossRef]

Tang, J. X.

Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, “An efficient organic light-emitting diode with silver electrodes,” Chem. Phys. Lett. 386, 128-131 (2004).
[CrossRef]

Tikhonravov, A. V.

Trubetskov, M. K.

VanSlyke, S. A.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913-915 (1987).
[CrossRef]

Verschoor, G. L. B.

S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Org. Electron. 3, 129-141(2002).
[CrossRef]

Walker, A.

C. D. J. Blades and A. Walker, “Simulation of organic light-emitting diodes,” Synth. Met. 111, 335-340 (2000).
[CrossRef]

Walker, A. B.

M. A. Webster, J. Auld, S. J. Martin, and A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300-309 (2004).
[CrossRef]

S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Org. Electron. 3, 129-141(2002).
[CrossRef]

Webster, M. A.

M. A. Webster, J. Auld, S. J. Martin, and A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300-309 (2004).
[CrossRef]

S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Org. Electron. 3, 129-141(2002).
[CrossRef]

Weisbuch, C.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction--part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

Wu, C. C.

C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode,” Appl. Phys. Lett. 83, 5127-5129 (2003).
[CrossRef]

Wu, H. M.

C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode,” Appl. Phys. Lett. 83, 5127-5129 (2003).
[CrossRef]

Xie, Z. Y.

Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, “An efficient organic light-emitting diode with silver electrodes,” Chem. Phys. Lett. 386, 128-131 (2004).
[CrossRef]

Yeow, Y. T.

J. Chan, A. W. Lu, C. H. Cheung, A. M. C. Ng, A. B. Djurisic, Y. T. Yeow, and A. D. Rakic, “Cavity design and optimization for organic microcavity OLEDs,” Proc. SPIE 6038, 603824-1(2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913-915 (1987).
[CrossRef]

L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, “Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes,” Appl. Phys. Lett. 78, 544-546 (2001).
[CrossRef]

C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode,” Appl. Phys. Lett. 83, 5127-5129 (2003).
[CrossRef]

Chem. Phys. Lett.

Y. Q. Li, J. X. Tang, Z. Y. Xie, L. S. Hung, and S. S. Lau, “An efficient organic light-emitting diode with silver electrodes,” Chem. Phys. Lett. 386, 128-131 (2004).
[CrossRef]

IEEE J. Quantum Electron.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction--part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723-731 (2003).
[CrossRef]

J. N. Bardsley, “International OLED technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 10, 3-9 (2004).
[CrossRef]

J. Appl. Phys.

H. Riel, S. Karg, T. Beierlein, W. Rie, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: an experimental and theoretical study,” J. Appl. Phys. 94, 5290-5296 (2003).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

C. C. Lee, M. Y. Chang, Y. D. Jong, T. W. Huang, C. S. Chu, and Y. Chang, “Numerical simulation of electrical and optical characteristics of multilayer organic light-emitting devices,” Jpn. J. Appl. Phys. 43, 7560-7565 (2004).
[CrossRef]

Mater. Sci. Eng. R

L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices,” Mater. Sci. Eng. R . 39, 143-222 (2002).
[CrossRef]

Opt. Commun.

A. B. Djurisic and A. D. Rakic, “Asymmetric Bragg mirrors for the reduction of emission wavelength dependence on the viewing angle in organic microcavity light emitting diodes,” Opt. Commun. 236, 303-311 (2004).
[CrossRef]

Org. Electron.

W. Brutting, S. Berleb, and A. G. Muckl, “Device physics of organic light-emitting diodes based on molecular materials,” Org. Electron. 2, 1-36 (2001).
[CrossRef]

S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Org. Electron. 3, 129-141(2002).
[CrossRef]

Phys. Rev. B

W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22, 3030-3038 (1980).
[CrossRef]

Phys. Rev. E

A. B. Djurisic, A. D. Rakic, and J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure,” Phys. Rev. E 55, 4797-4803(1997).
[CrossRef]

Proc. SPIE

J. Chan, A. W. Lu, C. H. Cheung, A. M. C. Ng, A. B. Djurisic, Y. T. Yeow, and A. D. Rakic, “Cavity design and optimization for organic microcavity OLEDs,” Proc. SPIE 6038, 603824-1(2006).
[CrossRef]

M. A. Webster, J. Auld, S. J. Martin, and A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300-309 (2004).
[CrossRef]

Synth. Met.

C. D. J. Blades and A. Walker, “Simulation of organic light-emitting diodes,” Synth. Met. 111, 335-340 (2000).
[CrossRef]

Other

ATLAS User's Manual--Device Simulation Software (SILVACO International, 2005).

A. H. Macleod, Thin Film Optical Filters (Institute of Physics, 2000).

DeBell Design, OptiLayer User's Guide for Windows '95/'98 & NT/4.0 (DeBell Design, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Equivalence between calculating EL (a) with optical index and thickness (for each layer) of multilayer mirrors and (b) with mirror parameters R, T, A, φ.

Fig. 2
Fig. 2

Device 1 is the simple ITO Li F / Al bottom-emitting device. Device 2 is the double metallic mirror top-emitting device.

Fig. 3
Fig. 3

Recombination rates for devices 1 and 2.

Fig. 4
Fig. 4

Electroluminescence (EL) plot for the reference devices (device 1 is the ITO Li F / Al reference device, device 2 is the Ag–Ag device).

Fig. 5
Fig. 5

Extracted light intensity with respect to T and R (white denotes maximum or 1.0, black denotes minimum or 0, and each gray level denotes a 0.1 step).

Fig. 6
Fig. 6

Light intensity versus real and imaginary part of reflection coefficient (white denotes maximum or 1.0, black denotes minimum or 0, and each gray level denotes a 0.1 step).

Fig. 7
Fig. 7

Resulting structure from the design and optimization procedure (device 3).

Fig. 8
Fig. 8

Comparison between EL from the optimized device (device 3) and ITO Li F / Al device (device 1).

Fig. 9
Fig. 9

Wavelength shift from 0° versus angle (device 2 is the Ag–Ag device and device 3 is the optimized device).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

d d x ( μ n n d ψ d x + D n d n d x ) = R , d d x ( μ p p d ψ d x + D p d p d x ) = R ,
R = γ ( p n n i 2 ) , γ = 4 π e μ R ε r ε 0 ,
d 2 ψ d x 2 = e ε r ε o [ p ( x ) n ( x ) + N D N A ] ,
i 4 π λ d i n i ( λ ) φ top ( 0 , λ ) φ bot ( 0 , λ ) = 2 m π ,
k i = 2 π λ N i ,
κ = k i sin ( α i ) ,
k z , i = k i cos ( α i ) = k i 2 κ 2 ,
F = 0 K ( κ ) d κ 2 ,
K TM = 3 4 R [ κ 2 k e 2 k z , e ( 1 a + TM ) ( 1 a TM ) 1 a TM ] ,
K T E = 0 ,
K | | TM = 3 8 R [ k z , e k e 3 ( 1 + a + TM ) ( 1 + a TM ) 1 a TM ] ,
K | | TE = 3 8 R [ 1 k e k z , e ( 1 + a + TE ) ( 1 + a TE ) 1 a TE ] ,
a + / TM / TE = r e , + / TM / TE exp ( 2 j k z , e z + / ) ,
a TM / TE = a + TM / TE a TM / TE .
K TM , TE = 1 3 K TM , TE + 2 3 K | | TM , TE ,
Δ λ = ϑ 0 ( i 4 π d i λ n i [ cos ϑ i 1 ] + Δ φ top + Δ φ bot ) ,

Metrics