Abstract

We report the polarization dynamics in an optical ground wire (OPGW) network for a summer period and a fall period for what is believed to be the first time. To better observe the surrounding magnetic fields contribution to modulating the state of polarization (SOP) we installed a Faraday rotating mirror to correct reciprocal birefringence from quasi-static changes. We also monitored the OPGW while no electrical current was present in the towers’ electrical conductors. The spectral analysis, the arc length mapped out over a given time interval on a Poincaré sphere, histograms of the arc length, and the SOP autocorrelation function are calculated to analyze the SOP changes. Ambient temperature changes, wind, Sun- induced temperature gradients, and electrical current all have a significant impact on the SOP drift in an OPGW network. Wind-generated cable oscillations and Sun-induced temperature gradients are shown to be the dominant slow SOP modulations, while Aeolian vibrations and electrical current are shown to be the dominant fast SOP modulations. The spectral analysis revealed that the electrical current gives the fastest SOP modulation to be 300Hz for the sampling frequency of 1KHz. This has set the upper speed limit for real-time polarization mode dispersion compensation devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription