Abstract

We report a continuous-wave (CW) optical parametric oscillator (OPO) based on a MgO-doped periodically poled LiNbO3 (MgO:PPLN) crystal. The 532nm pump generates coherent radiation that is tunable from 800 to 920 nm for the signal and from 1250 to 1580 nm for the idler, respectively. The OPO output power exhibits a slowly varying instability that we attribute to a thermal effect induced by the pump. This instability is truncated by means of a low-pass servo that includes a single-mode fiber that filters the beam into a single spatial mode. The resulting output characteristics are promising for radiometric applications in the near infrared including most fiber-optic communication bands.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Sutherland, Handbook of Nonlinear Optics, ed. (Marcel Dekker, 2003), Chap. 3.
    [CrossRef]
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102-2116 (1995).
    [CrossRef]
  3. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713-715 (1996).
    [CrossRef] [PubMed]
  4. M. E. Klein, D.-H. Lee, J.-P. Meyn, B. Beier, K.-J. Boller, and R. Wallenstein, “Diode-pumped continuous-wave widely tunable optical parametric oscillator based on periodically poled lithium tantalate,” Opt. Lett. 23, 831-833 (1998).
    [CrossRef]
  5. A. Garashi, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4,” Opt. Lett. 23, 1739-1741 (1998).
    [CrossRef]
  6. T. J. Edwards, G. A. Turnball, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, “Continous-wave singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 837-839 (1998).
    [CrossRef]
  7. R. G. Batchko, D. R. Weise, T. Plettner, G. D. Miller, M. M. Fejer, and R. L. Byer, “Continuous-wave 532 nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 23, 168-170 (1998).
    [CrossRef]
  8. U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 μm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602-1604 (1999).
    [CrossRef]
  9. G. M. Gibson, M. Ebrahimzadeh, J. J. Padgett, and M. H. Dunn, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4 and its application to spectroscopy,” Opt. Lett. 24, 397 (1999).
    [CrossRef]
  10. U. Strössner, J.-P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Rosenman, J. Mlynek, S. Schiller, and A. Peters, “Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830 nm,” J. Opt. Soc. Am. B 19, 1419-1424 (2002).
    [CrossRef]
  11. G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32, 400-402 (2007).
    [CrossRef] [PubMed]
  12. J.-M. MelkonianT.-H. My, F. Bretenaker, and C. Drag, “High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red,” Opt. Lett. 32, 518-520 (2007).
    [CrossRef] [PubMed]
  13. P. Gross, Institut für Angewandte Physik, Universität Münster, Corrensstrasse 2-4, D-48149 Münster, Germany (personal communication, 2008).
  14. G. Robertson, M. J. Padgett, and M. H. Dunn, “Continuous-wave singly resonant pump-enhanced type II Li B3O5optical parametric oscillator,” Opt. Lett. 19, 1735-1737 (1994).
    [CrossRef] [PubMed]
  15. S. Schiller, K. Schneider, and J. Mlynek, “Theory of an optical parametric oscillator with resonant pump and signal,” J. Opt. Soc. Am. B 16, 1512-1524 (1999).
    [CrossRef]
  16. M. López, H. Hofer, and S. Kück, “High accuracy measurement of the absolute spectral responsivity of Ge and InGaAs trap detectors by direct calibration against an electrically calibrated cryogenic radiometer in the near-infrared,” Metrologia 43, 508-514 (2006).
    [CrossRef]
  17. H. Kolgenik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550-1566 (1966).
    [CrossRef]
  18. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, 1999).
  19. SNLO version 42 nonlinear optics code available from A. V. Smith (arlee.smith@as-photonics.com), AS-Photonics, Albuquerque, New Mexico.
  20. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3638(1968).
    [CrossRef]
  21. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
    [CrossRef]
  22. D.-H. Lee, M. E. Klein, and K.-J. Boller, “Intensity noise of pump-enhanced continuous-wave optical parametric oscillators,” Appl. Phys. B 66, 747-753 (1998).
    [CrossRef]
  23. F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, “Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN,” Opt. Express 15, 12882-12889(2007).
    [CrossRef] [PubMed]
  24. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
    [CrossRef]

2007

2006

M. López, H. Hofer, and S. Kück, “High accuracy measurement of the absolute spectral responsivity of Ge and InGaAs trap detectors by direct calibration against an electrically calibrated cryogenic radiometer in the near-infrared,” Metrologia 43, 508-514 (2006).
[CrossRef]

2002

1999

1998

1996

1995

1994

1984

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

1968

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3638(1968).
[CrossRef]

1966

Alexander, J. I.

Arie, A.

Arvidsson, G.

Batchko, R. G.

Beier, B.

Boller, K.-J.

Bosenberg, W. R.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3638(1968).
[CrossRef]

Bretenaker, F.

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Byer, R. L.

Dajani, I.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, 1999).

Drag, C.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Drobshoff, A.

Dunn, M. H.

Ebrahimzadeh, M.

Ebrahim-Zadeh, M.

Eckardt, R. C.

Edwards, T. J.

Fayaz, G. R.

Fejer, M. M.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Garashi, A.

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Gibson, G. M.

Gross, P.

P. Gross, Institut für Angewandte Physik, Universität Münster, Corrensstrasse 2-4, D-48149 Münster, Germany (personal communication, 2008).

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, 1999).

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Hofer, H.

M. López, H. Hofer, and S. Kück, “High accuracy measurement of the absolute spectral responsivity of Ge and InGaAs trap detectors by direct calibration against an electrically calibrated cryogenic radiometer in the near-infrared,” Metrologia 43, 508-514 (2006).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Karlsson, H.

Klein, M. E.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3638(1968).
[CrossRef]

Knize, R. J.

Kolgenik, H.

Kontur, F. J.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Kück, S.

M. López, H. Hofer, and S. Kück, “High accuracy measurement of the absolute spectral responsivity of Ge and InGaAs trap detectors by direct calibration against an electrically calibrated cryogenic radiometer in the near-infrared,” Metrologia 43, 508-514 (2006).
[CrossRef]

Laurell, F.

Lee, D.-H.

Li, T.

López, M.

M. López, H. Hofer, and S. Kück, “High accuracy measurement of the absolute spectral responsivity of Ge and InGaAs trap detectors by direct calibration against an electrically calibrated cryogenic radiometer in the near-infrared,” Metrologia 43, 508-514 (2006).
[CrossRef]

Lu, Y.

Melkonian, J.-M.

Meyn, J.-P.

Miller, G. D.

Mlynek, J.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

My, T.-H.

Myers, L. E.

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, 1999).

Padgett, J. J.

Padgett, M. J.

Peters, A.

Pierce, J. W.

Plettner, T.

Robertson, G.

Rosenman, G.

Samanta, G. K.

Schiller, S.

Schneider, K.

Skliar, A.

Smith, A. V.

SNLO version 42 nonlinear optics code available from A. V. Smith (arlee.smith@as-photonics.com), AS-Photonics, Albuquerque, New Mexico.

Strössner, U.

Sun, Z.

Sutherland, R. L.

R. L. Sutherland, Handbook of Nonlinear Optics, ed. (Marcel Dekker, 2003), Chap. 3.
[CrossRef]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Turnball, G. A.

Urenski, P.

Wallenstein, R.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Weise, D. R.

Appl. Opt.

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

D.-H. Lee, M. E. Klein, and K.-J. Boller, “Intensity noise of pump-enhanced continuous-wave optical parametric oscillators,” Appl. Phys. B 66, 747-753 (1998).
[CrossRef]

Appl. Phys. Lett.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

J. Appl. Phys.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597-3638(1968).
[CrossRef]

J. Opt. Soc. Am. B

Metrologia

M. López, H. Hofer, and S. Kück, “High accuracy measurement of the absolute spectral responsivity of Ge and InGaAs trap detectors by direct calibration against an electrically calibrated cryogenic radiometer in the near-infrared,” Metrologia 43, 508-514 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

G. Robertson, M. J. Padgett, and M. H. Dunn, “Continuous-wave singly resonant pump-enhanced type II Li B3O5optical parametric oscillator,” Opt. Lett. 19, 1735-1737 (1994).
[CrossRef] [PubMed]

G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32, 400-402 (2007).
[CrossRef] [PubMed]

J.-M. MelkonianT.-H. My, F. Bretenaker, and C. Drag, “High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red,” Opt. Lett. 32, 518-520 (2007).
[CrossRef] [PubMed]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 21, 713-715 (1996).
[CrossRef] [PubMed]

M. E. Klein, D.-H. Lee, J.-P. Meyn, B. Beier, K.-J. Boller, and R. Wallenstein, “Diode-pumped continuous-wave widely tunable optical parametric oscillator based on periodically poled lithium tantalate,” Opt. Lett. 23, 831-833 (1998).
[CrossRef]

A. Garashi, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4,” Opt. Lett. 23, 1739-1741 (1998).
[CrossRef]

T. J. Edwards, G. A. Turnball, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, “Continous-wave singly resonant optical parametric oscillator based on periodically poled RbTiOAsO4,” Opt. Lett. 23, 837-839 (1998).
[CrossRef]

R. G. Batchko, D. R. Weise, T. Plettner, G. D. Miller, M. M. Fejer, and R. L. Byer, “Continuous-wave 532 nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 23, 168-170 (1998).
[CrossRef]

U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 μm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602-1604 (1999).
[CrossRef]

G. M. Gibson, M. Ebrahimzadeh, J. J. Padgett, and M. H. Dunn, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4 and its application to spectroscopy,” Opt. Lett. 24, 397 (1999).
[CrossRef]

Other

P. Gross, Institut für Angewandte Physik, Universität Münster, Corrensstrasse 2-4, D-48149 Münster, Germany (personal communication, 2008).

R. L. Sutherland, Handbook of Nonlinear Optics, ed. (Marcel Dekker, 2003), Chap. 3.
[CrossRef]

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, 1999).

SNLO version 42 nonlinear optics code available from A. V. Smith (arlee.smith@as-photonics.com), AS-Photonics, Albuquerque, New Mexico.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the MgO:PPLN CW OPO setup. The abbreviations are defined in the text.

Fig. 2
Fig. 2

Measured signal and idler output wavelengths of the MgO:PPLN CW OPO as functions of the crystal temperature for different poling periods Λ from 7.1 to 7.6 μm (symbols). The solid lines represent the theoretical values calculated from the dispersion relations for a 5 mol % MgO-doped congruent PPLN crystal.

Fig. 3
Fig. 3

Measured output power at the idler wavelength of 1404 nm as a function of the pump power: crosses, data of individual measurements; filled squares, average values of the data at each pump power; solid curve, theoretical fit to the averaged values that determines the threshold pump power to be 163 mW .

Fig. 4
Fig. 4

Spectrum of the signal output radiation of the CW OPO at 898 nm , measured with a Fabry–Perot interferometer with a free spectral range of 1 GHz . Inset shows an enlarged peak overlapped with a Lorentzian function (thin solid line) fitted to the measured data.

Fig. 5
Fig. 5

Temporal stability of the CW OPO output power for various time durations measured at the idler wavelength of 1404 nm by use of an InGaAs photodiode.

Fig. 6
Fig. 6

Schematic diagram of the power stabilization and spatial mode filtering setup for the CW OPO setup.

Fig. 7
Fig. 7

Temporal stability of the CW OPO output power after power regulation and spatial mode filtering for various time durations measured at the idler wavelength of 1404 nm with an InGaAs photodiode. The values for σ indicate the relative standard deviations of the measured data.

Metrics