Abstract

For monitoring the position and shape of fast moving and, especially, rotating objects such as turbo machine rotors, contactless and compact sensors with a high measurement rate as well as high precision are required. We present for the first time, to the best of our knowledge, a novel laser Doppler sensor employing a single fan-shaped interference fringe system, which allows measuring for the position and shape of fast moving solid bodies with known tangential velocity. It is shown theoretically as well as experimentally that this sensor offers concurrently high position resolution and high temporal resolution in contrast to conventional measurement techniques, since its measurement uncertainty is, in principle, independent of the object velocity. Moreover, it can be built very compact, because it features low complexity. To prove its operational capability and its potential for practical applications, radial and axial shape measurements of rotating bodies are demonstrated in comparison with triangulation. An average position resolution of about 2μm could be achieved.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Osten and M. Takeda, eds., Optical Metrology in Production Engineering (SPIE Press, 2004), Vol. 5457.
  2. W. Cheng, D. Zhu, and S. Zhao, “Vibration measurement of rotor under the rotary condition using the laser untouched method,” Proc. SPIE 5058, 714-716 (2002).
    [CrossRef]
  3. A. Flotow, M. Mercadal, and P. Tappert, “Health monitoring and prognostics of blades and disks with blade tip sensors,” in Proceedings of IEEE Aerospace Conference, Vol. 6 (IEEE, 2000), pp. 433-440.
  4. S. B. Lattime and B. M. Steinetz, “High-pressure-turbine clearance control systems: current practices and future directions,” J. Propul. Power 20, 302-311 (2004).
    [CrossRef]
  5. M. O. T. Cole, P. S. Keogh, M. N. Sahinkaya, and C. R. Burrows, “Towards fault-tolerant active control of rotor-magnetic bearing systems,” Contr. Eng. Pract. 12, 491-501 (2004).
    [CrossRef]
  6. A. G. Sheard, S. G. O'Donnell, and J. F. Stringfellow, “High temperature proximity measurement in aero and industrial turbomachinery,” J. Eng. Gas Turbine Power 121, 167-173(1999).
    [CrossRef]
  7. R. G. Dorsch, G. Häusler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306-1314 (1994).
    [CrossRef] [PubMed]
  8. T. A. Clarke, “The development of an optical triangulation pipe profiler,” in Optical 3-D Measurement Techniques III, A. Grün and H. Kahmen, eds. (Wichmann Verlag, 1995), pp. 331-340.
  9. E. Shafir and G. Berkovic, “Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity,” Appl. Opt. 45, 7772-7777 (2006).
    [CrossRef] [PubMed]
  10. P. Palojärvi, K. Määttä, and J. Kostamovaara, “Integrated time-of-flight laser radar,” IEEE Trans. Instrum. Meas. 46, 996-999 (1997).
    [CrossRef]
  11. H. J. Tiziani, A. Rothe, and N. Maier, “Dual-wavelength heterodyne differential interferometer for high-precision measurements of reflective aspherical surfaces and step heights,” Appl. Opt. 35, 3525-3533 (1996).
    [CrossRef] [PubMed]
  12. H. Jennewein, H. Gottschling, and T. Tschudi, “Absolute Distanzmessung mit einem faseroptischen interferometer,” Technisches Messen 67, 410-414 (2000).
    [CrossRef]
  13. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919-925 (1992).
    [CrossRef] [PubMed]
  14. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  15. G. Häusler, P. Ettl, and M. Schenk, “Limits of optical range sensors and how to exploit them,” in International Trends in Optics and Photonics ICO IV, Springer Series in Optical Sciences, Vol. 74, T. Asakura, ed. (Springer, 1999), pp. 328-342.
  16. T. Pfister, L. Büttner, and J. Czarske, “Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects,” Meas. Sci. Technol. 16, 627-641 (2005).
    [CrossRef]
  17. T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, “Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor,” Meas. Sci. Technol. 17, 1693-1705 (2006).
    [CrossRef]
  18. T. Pfister, L. Büttner, and J. Czarske, “In-process shape and roundness measurements at turning machines using a novel laser Doppler profile sensor,” Proc. SPIE 5774, 44-55 (2005).
    [CrossRef]
  19. L. Büttner, T. Pfister, and J. Czarske, “Fiber optic laser Doppler turbine tip clearance probe,” Opt. Lett. 31, 1217-1219(2006).
    [CrossRef] [PubMed]
  20. P. C. Miles and P. O. Witze, “Evaluation of the Gaussian beam model for prediction of LDV fringe fields,” in Proceedings of the 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durão, F. Durst, M. V. Heitor, M. Maeda, and J. H. Whitelaw, eds. (Springer, 1996), paper 40.1.
    [PubMed]
  21. T. Pfister, Untersuchung neuartiger Laser-Doppler-Verfahren zur Positions- und Formvermessung bewegter Festkörperoberflächen (Shaker Verlag, 2008).
    [PubMed]
  22. T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Absolute and dynamic position and shape measurement of fast moving objects employing novel laser Doppler techniques,” Proc. SPIE 7155, 715513 (2008).
    [CrossRef]
  23. T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501-2510 (2005).
    [CrossRef] [PubMed]
  24. J. Czarske, “Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals,” Meas. Sci. Technol. 12, 597-614 (2001).
    [CrossRef]
  25. K.-D. Sommer and B. R. L. Siebert, “Praxisgerechtes Bestimmen der Messunsicherheit nach GUM,” Technisches Messen 71, 52-66 (2004).
    [CrossRef]
  26. T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Shape and vibration measurement of fast rotating objects employing novel laser Doppler techniques,” Proc. SPIE 6616, 66163S (2007).
    [CrossRef]
  27. A. Naqwi, W. C. Reynolds, and L. W. Carr, “Dual cylindrical wave laser-Doppler method for measurement of wall shear stress,” in Proceedings of the 2nd International Symposium on Applications of Laser Anemometry to Fluid Mechanics (Ladoan-Instituto Superior Tecnico, 1984), paper 8.2.
  28. A. Naqwi and W. C. Reynolds, “Measurement of turbulent wall velocity gradients using cylindrical waves of laser light,” Exp. Fluids 10, 257-266 (1991).
    [CrossRef]

2008 (1)

T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Absolute and dynamic position and shape measurement of fast moving objects employing novel laser Doppler techniques,” Proc. SPIE 7155, 715513 (2008).
[CrossRef]

2007 (1)

T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Shape and vibration measurement of fast rotating objects employing novel laser Doppler techniques,” Proc. SPIE 6616, 66163S (2007).
[CrossRef]

2006 (3)

2005 (3)

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501-2510 (2005).
[CrossRef] [PubMed]

T. Pfister, L. Büttner, and J. Czarske, “In-process shape and roundness measurements at turning machines using a novel laser Doppler profile sensor,” Proc. SPIE 5774, 44-55 (2005).
[CrossRef]

T. Pfister, L. Büttner, and J. Czarske, “Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects,” Meas. Sci. Technol. 16, 627-641 (2005).
[CrossRef]

2004 (4)

K.-D. Sommer and B. R. L. Siebert, “Praxisgerechtes Bestimmen der Messunsicherheit nach GUM,” Technisches Messen 71, 52-66 (2004).
[CrossRef]

S. B. Lattime and B. M. Steinetz, “High-pressure-turbine clearance control systems: current practices and future directions,” J. Propul. Power 20, 302-311 (2004).
[CrossRef]

M. O. T. Cole, P. S. Keogh, M. N. Sahinkaya, and C. R. Burrows, “Towards fault-tolerant active control of rotor-magnetic bearing systems,” Contr. Eng. Pract. 12, 491-501 (2004).
[CrossRef]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

2002 (1)

W. Cheng, D. Zhu, and S. Zhao, “Vibration measurement of rotor under the rotary condition using the laser untouched method,” Proc. SPIE 5058, 714-716 (2002).
[CrossRef]

2001 (1)

J. Czarske, “Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals,” Meas. Sci. Technol. 12, 597-614 (2001).
[CrossRef]

2000 (1)

H. Jennewein, H. Gottschling, and T. Tschudi, “Absolute Distanzmessung mit einem faseroptischen interferometer,” Technisches Messen 67, 410-414 (2000).
[CrossRef]

1999 (1)

A. G. Sheard, S. G. O'Donnell, and J. F. Stringfellow, “High temperature proximity measurement in aero and industrial turbomachinery,” J. Eng. Gas Turbine Power 121, 167-173(1999).
[CrossRef]

1997 (1)

P. Palojärvi, K. Määttä, and J. Kostamovaara, “Integrated time-of-flight laser radar,” IEEE Trans. Instrum. Meas. 46, 996-999 (1997).
[CrossRef]

1996 (1)

1994 (1)

1992 (1)

1991 (1)

A. Naqwi and W. C. Reynolds, “Measurement of turbulent wall velocity gradients using cylindrical waves of laser light,” Exp. Fluids 10, 257-266 (1991).
[CrossRef]

Berkovic, G.

Burrows, C. R.

M. O. T. Cole, P. S. Keogh, M. N. Sahinkaya, and C. R. Burrows, “Towards fault-tolerant active control of rotor-magnetic bearing systems,” Contr. Eng. Pract. 12, 491-501 (2004).
[CrossRef]

Büttner, L.

T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Absolute and dynamic position and shape measurement of fast moving objects employing novel laser Doppler techniques,” Proc. SPIE 7155, 715513 (2008).
[CrossRef]

T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Shape and vibration measurement of fast rotating objects employing novel laser Doppler techniques,” Proc. SPIE 6616, 66163S (2007).
[CrossRef]

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, “Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor,” Meas. Sci. Technol. 17, 1693-1705 (2006).
[CrossRef]

L. Büttner, T. Pfister, and J. Czarske, “Fiber optic laser Doppler turbine tip clearance probe,” Opt. Lett. 31, 1217-1219(2006).
[CrossRef] [PubMed]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501-2510 (2005).
[CrossRef] [PubMed]

T. Pfister, L. Büttner, and J. Czarske, “Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects,” Meas. Sci. Technol. 16, 627-641 (2005).
[CrossRef]

T. Pfister, L. Büttner, and J. Czarske, “In-process shape and roundness measurements at turning machines using a novel laser Doppler profile sensor,” Proc. SPIE 5774, 44-55 (2005).
[CrossRef]

Carr, L. W.

A. Naqwi, W. C. Reynolds, and L. W. Carr, “Dual cylindrical wave laser-Doppler method for measurement of wall shear stress,” in Proceedings of the 2nd International Symposium on Applications of Laser Anemometry to Fluid Mechanics (Ladoan-Instituto Superior Tecnico, 1984), paper 8.2.

Cheng, W.

W. Cheng, D. Zhu, and S. Zhao, “Vibration measurement of rotor under the rotary condition using the laser untouched method,” Proc. SPIE 5058, 714-716 (2002).
[CrossRef]

Clarke, T. A.

T. A. Clarke, “The development of an optical triangulation pipe profiler,” in Optical 3-D Measurement Techniques III, A. Grün and H. Kahmen, eds. (Wichmann Verlag, 1995), pp. 331-340.

Cole, M. O. T.

M. O. T. Cole, P. S. Keogh, M. N. Sahinkaya, and C. R. Burrows, “Towards fault-tolerant active control of rotor-magnetic bearing systems,” Contr. Eng. Pract. 12, 491-501 (2004).
[CrossRef]

Czarske, J.

T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Absolute and dynamic position and shape measurement of fast moving objects employing novel laser Doppler techniques,” Proc. SPIE 7155, 715513 (2008).
[CrossRef]

T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Shape and vibration measurement of fast rotating objects employing novel laser Doppler techniques,” Proc. SPIE 6616, 66163S (2007).
[CrossRef]

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, “Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor,” Meas. Sci. Technol. 17, 1693-1705 (2006).
[CrossRef]

L. Büttner, T. Pfister, and J. Czarske, “Fiber optic laser Doppler turbine tip clearance probe,” Opt. Lett. 31, 1217-1219(2006).
[CrossRef] [PubMed]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501-2510 (2005).
[CrossRef] [PubMed]

T. Pfister, L. Büttner, and J. Czarske, “Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects,” Meas. Sci. Technol. 16, 627-641 (2005).
[CrossRef]

T. Pfister, L. Büttner, and J. Czarske, “In-process shape and roundness measurements at turning machines using a novel laser Doppler profile sensor,” Proc. SPIE 5774, 44-55 (2005).
[CrossRef]

J. Czarske, “Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals,” Meas. Sci. Technol. 12, 597-614 (2001).
[CrossRef]

Dorsch, R. G.

Dresel, T.

Duker, J. S.

Ettl, P.

G. Häusler, P. Ettl, and M. Schenk, “Limits of optical range sensors and how to exploit them,” in International Trends in Optics and Photonics ICO IV, Springer Series in Optical Sciences, Vol. 74, T. Asakura, ed. (Springer, 1999), pp. 328-342.

Flotow, A.

A. Flotow, M. Mercadal, and P. Tappert, “Health monitoring and prognostics of blades and disks with blade tip sensors,” in Proceedings of IEEE Aerospace Conference, Vol. 6 (IEEE, 2000), pp. 433-440.

Fujimoto, J. G.

Gottschling, H.

H. Jennewein, H. Gottschling, and T. Tschudi, “Absolute Distanzmessung mit einem faseroptischen interferometer,” Technisches Messen 67, 410-414 (2000).
[CrossRef]

Günther, P.

T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Absolute and dynamic position and shape measurement of fast moving objects employing novel laser Doppler techniques,” Proc. SPIE 7155, 715513 (2008).
[CrossRef]

T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Shape and vibration measurement of fast rotating objects employing novel laser Doppler techniques,” Proc. SPIE 6616, 66163S (2007).
[CrossRef]

Häusler, G.

R. G. Dorsch, G. Häusler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306-1314 (1994).
[CrossRef] [PubMed]

T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919-925 (1992).
[CrossRef] [PubMed]

G. Häusler, P. Ettl, and M. Schenk, “Limits of optical range sensors and how to exploit them,” in International Trends in Optics and Photonics ICO IV, Springer Series in Optical Sciences, Vol. 74, T. Asakura, ed. (Springer, 1999), pp. 328-342.

Herrmann, J. M.

Jennewein, H.

H. Jennewein, H. Gottschling, and T. Tschudi, “Absolute Distanzmessung mit einem faseroptischen interferometer,” Technisches Messen 67, 410-414 (2000).
[CrossRef]

Keogh, P. S.

M. O. T. Cole, P. S. Keogh, M. N. Sahinkaya, and C. R. Burrows, “Towards fault-tolerant active control of rotor-magnetic bearing systems,” Contr. Eng. Pract. 12, 491-501 (2004).
[CrossRef]

Ko, T. H.

Kostamovaara, J.

P. Palojärvi, K. Määttä, and J. Kostamovaara, “Integrated time-of-flight laser radar,” IEEE Trans. Instrum. Meas. 46, 996-999 (1997).
[CrossRef]

Kowalczyk, A.

Krain, H.

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, “Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor,” Meas. Sci. Technol. 17, 1693-1705 (2006).
[CrossRef]

Lattime, S. B.

S. B. Lattime and B. M. Steinetz, “High-pressure-turbine clearance control systems: current practices and future directions,” J. Propul. Power 20, 302-311 (2004).
[CrossRef]

Määttä, K.

P. Palojärvi, K. Määttä, and J. Kostamovaara, “Integrated time-of-flight laser radar,” IEEE Trans. Instrum. Meas. 46, 996-999 (1997).
[CrossRef]

Maier, N.

Mercadal, M.

A. Flotow, M. Mercadal, and P. Tappert, “Health monitoring and prognostics of blades and disks with blade tip sensors,” in Proceedings of IEEE Aerospace Conference, Vol. 6 (IEEE, 2000), pp. 433-440.

Miles, P. C.

P. C. Miles and P. O. Witze, “Evaluation of the Gaussian beam model for prediction of LDV fringe fields,” in Proceedings of the 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durão, F. Durst, M. V. Heitor, M. Maeda, and J. H. Whitelaw, eds. (Springer, 1996), paper 40.1.
[PubMed]

Naqwi, A.

A. Naqwi and W. C. Reynolds, “Measurement of turbulent wall velocity gradients using cylindrical waves of laser light,” Exp. Fluids 10, 257-266 (1991).
[CrossRef]

A. Naqwi, W. C. Reynolds, and L. W. Carr, “Dual cylindrical wave laser-Doppler method for measurement of wall shear stress,” in Proceedings of the 2nd International Symposium on Applications of Laser Anemometry to Fluid Mechanics (Ladoan-Instituto Superior Tecnico, 1984), paper 8.2.

O'Donnell, S. G.

A. G. Sheard, S. G. O'Donnell, and J. F. Stringfellow, “High temperature proximity measurement in aero and industrial turbomachinery,” J. Eng. Gas Turbine Power 121, 167-173(1999).
[CrossRef]

Palojärvi, P.

P. Palojärvi, K. Määttä, and J. Kostamovaara, “Integrated time-of-flight laser radar,” IEEE Trans. Instrum. Meas. 46, 996-999 (1997).
[CrossRef]

Pfister, T.

T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Absolute and dynamic position and shape measurement of fast moving objects employing novel laser Doppler techniques,” Proc. SPIE 7155, 715513 (2008).
[CrossRef]

T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Shape and vibration measurement of fast rotating objects employing novel laser Doppler techniques,” Proc. SPIE 6616, 66163S (2007).
[CrossRef]

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, “Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor,” Meas. Sci. Technol. 17, 1693-1705 (2006).
[CrossRef]

L. Büttner, T. Pfister, and J. Czarske, “Fiber optic laser Doppler turbine tip clearance probe,” Opt. Lett. 31, 1217-1219(2006).
[CrossRef] [PubMed]

T. Pfister, L. Büttner, and J. Czarske, “Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects,” Meas. Sci. Technol. 16, 627-641 (2005).
[CrossRef]

T. Pfister, L. Büttner, and J. Czarske, “In-process shape and roundness measurements at turning machines using a novel laser Doppler profile sensor,” Proc. SPIE 5774, 44-55 (2005).
[CrossRef]

T. Pfister, L. Büttner, K. Shirai, and J. Czarske, “Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing,” Appl. Opt. 44, 2501-2510 (2005).
[CrossRef] [PubMed]

T. Pfister, Untersuchung neuartiger Laser-Doppler-Verfahren zur Positions- und Formvermessung bewegter Festkörperoberflächen (Shaker Verlag, 2008).
[PubMed]

Reynolds, W. C.

A. Naqwi and W. C. Reynolds, “Measurement of turbulent wall velocity gradients using cylindrical waves of laser light,” Exp. Fluids 10, 257-266 (1991).
[CrossRef]

A. Naqwi, W. C. Reynolds, and L. W. Carr, “Dual cylindrical wave laser-Doppler method for measurement of wall shear stress,” in Proceedings of the 2nd International Symposium on Applications of Laser Anemometry to Fluid Mechanics (Ladoan-Instituto Superior Tecnico, 1984), paper 8.2.

Rothe, A.

Sahinkaya, M. N.

M. O. T. Cole, P. S. Keogh, M. N. Sahinkaya, and C. R. Burrows, “Towards fault-tolerant active control of rotor-magnetic bearing systems,” Contr. Eng. Pract. 12, 491-501 (2004).
[CrossRef]

Schenk, M.

G. Häusler, P. Ettl, and M. Schenk, “Limits of optical range sensors and how to exploit them,” in International Trends in Optics and Photonics ICO IV, Springer Series in Optical Sciences, Vol. 74, T. Asakura, ed. (Springer, 1999), pp. 328-342.

Schodl, R.

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, “Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor,” Meas. Sci. Technol. 17, 1693-1705 (2006).
[CrossRef]

Shafir, E.

Sheard, A. G.

A. G. Sheard, S. G. O'Donnell, and J. F. Stringfellow, “High temperature proximity measurement in aero and industrial turbomachinery,” J. Eng. Gas Turbine Power 121, 167-173(1999).
[CrossRef]

Shirai, K.

Siebert, B. R. L.

K.-D. Sommer and B. R. L. Siebert, “Praxisgerechtes Bestimmen der Messunsicherheit nach GUM,” Technisches Messen 71, 52-66 (2004).
[CrossRef]

Sommer, K.-D.

K.-D. Sommer and B. R. L. Siebert, “Praxisgerechtes Bestimmen der Messunsicherheit nach GUM,” Technisches Messen 71, 52-66 (2004).
[CrossRef]

Srinivasan, V. J.

Steinetz, B. M.

S. B. Lattime and B. M. Steinetz, “High-pressure-turbine clearance control systems: current practices and future directions,” J. Propul. Power 20, 302-311 (2004).
[CrossRef]

Stringfellow, J. F.

A. G. Sheard, S. G. O'Donnell, and J. F. Stringfellow, “High temperature proximity measurement in aero and industrial turbomachinery,” J. Eng. Gas Turbine Power 121, 167-173(1999).
[CrossRef]

Tappert, P.

A. Flotow, M. Mercadal, and P. Tappert, “Health monitoring and prognostics of blades and disks with blade tip sensors,” in Proceedings of IEEE Aerospace Conference, Vol. 6 (IEEE, 2000), pp. 433-440.

Tiziani, H. J.

Tschudi, T.

H. Jennewein, H. Gottschling, and T. Tschudi, “Absolute Distanzmessung mit einem faseroptischen interferometer,” Technisches Messen 67, 410-414 (2000).
[CrossRef]

Venzke, H.

Witze, P. O.

P. C. Miles and P. O. Witze, “Evaluation of the Gaussian beam model for prediction of LDV fringe fields,” in Proceedings of the 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durão, F. Durst, M. V. Heitor, M. Maeda, and J. H. Whitelaw, eds. (Springer, 1996), paper 40.1.
[PubMed]

Wojtkowski, M.

Zhao, S.

W. Cheng, D. Zhu, and S. Zhao, “Vibration measurement of rotor under the rotary condition using the laser untouched method,” Proc. SPIE 5058, 714-716 (2002).
[CrossRef]

Zhu, D.

W. Cheng, D. Zhu, and S. Zhao, “Vibration measurement of rotor under the rotary condition using the laser untouched method,” Proc. SPIE 5058, 714-716 (2002).
[CrossRef]

Appl. Opt. (5)

Contr. Eng. Pract. (1)

M. O. T. Cole, P. S. Keogh, M. N. Sahinkaya, and C. R. Burrows, “Towards fault-tolerant active control of rotor-magnetic bearing systems,” Contr. Eng. Pract. 12, 491-501 (2004).
[CrossRef]

Exp. Fluids (1)

A. Naqwi and W. C. Reynolds, “Measurement of turbulent wall velocity gradients using cylindrical waves of laser light,” Exp. Fluids 10, 257-266 (1991).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

P. Palojärvi, K. Määttä, and J. Kostamovaara, “Integrated time-of-flight laser radar,” IEEE Trans. Instrum. Meas. 46, 996-999 (1997).
[CrossRef]

J. Eng. Gas Turbine Power (1)

A. G. Sheard, S. G. O'Donnell, and J. F. Stringfellow, “High temperature proximity measurement in aero and industrial turbomachinery,” J. Eng. Gas Turbine Power 121, 167-173(1999).
[CrossRef]

J. Propul. Power (1)

S. B. Lattime and B. M. Steinetz, “High-pressure-turbine clearance control systems: current practices and future directions,” J. Propul. Power 20, 302-311 (2004).
[CrossRef]

Meas. Sci. Technol. (3)

T. Pfister, L. Büttner, and J. Czarske, “Laser Doppler profile sensor with sub-micrometre position resolution for velocity and absolute radius measurements of rotating objects,” Meas. Sci. Technol. 16, 627-641 (2005).
[CrossRef]

T. Pfister, L. Büttner, J. Czarske, H. Krain, and R. Schodl, “Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor,” Meas. Sci. Technol. 17, 1693-1705 (2006).
[CrossRef]

J. Czarske, “Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals,” Meas. Sci. Technol. 12, 597-614 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Absolute and dynamic position and shape measurement of fast moving objects employing novel laser Doppler techniques,” Proc. SPIE 7155, 715513 (2008).
[CrossRef]

Proc. SPIE (3)

T. Pfister, P. Günther, L. Büttner, and J. Czarske, “Shape and vibration measurement of fast rotating objects employing novel laser Doppler techniques,” Proc. SPIE 6616, 66163S (2007).
[CrossRef]

T. Pfister, L. Büttner, and J. Czarske, “In-process shape and roundness measurements at turning machines using a novel laser Doppler profile sensor,” Proc. SPIE 5774, 44-55 (2005).
[CrossRef]

W. Cheng, D. Zhu, and S. Zhao, “Vibration measurement of rotor under the rotary condition using the laser untouched method,” Proc. SPIE 5058, 714-716 (2002).
[CrossRef]

Technisches Messen (2)

K.-D. Sommer and B. R. L. Siebert, “Praxisgerechtes Bestimmen der Messunsicherheit nach GUM,” Technisches Messen 71, 52-66 (2004).
[CrossRef]

H. Jennewein, H. Gottschling, and T. Tschudi, “Absolute Distanzmessung mit einem faseroptischen interferometer,” Technisches Messen 67, 410-414 (2000).
[CrossRef]

Other (7)

A. Naqwi, W. C. Reynolds, and L. W. Carr, “Dual cylindrical wave laser-Doppler method for measurement of wall shear stress,” in Proceedings of the 2nd International Symposium on Applications of Laser Anemometry to Fluid Mechanics (Ladoan-Instituto Superior Tecnico, 1984), paper 8.2.

P. C. Miles and P. O. Witze, “Evaluation of the Gaussian beam model for prediction of LDV fringe fields,” in Proceedings of the 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durão, F. Durst, M. V. Heitor, M. Maeda, and J. H. Whitelaw, eds. (Springer, 1996), paper 40.1.
[PubMed]

T. Pfister, Untersuchung neuartiger Laser-Doppler-Verfahren zur Positions- und Formvermessung bewegter Festkörperoberflächen (Shaker Verlag, 2008).
[PubMed]

A. Flotow, M. Mercadal, and P. Tappert, “Health monitoring and prognostics of blades and disks with blade tip sensors,” in Proceedings of IEEE Aerospace Conference, Vol. 6 (IEEE, 2000), pp. 433-440.

W. Osten and M. Takeda, eds., Optical Metrology in Production Engineering (SPIE Press, 2004), Vol. 5457.

T. A. Clarke, “The development of an optical triangulation pipe profiler,” in Optical 3-D Measurement Techniques III, A. Grün and H. Kahmen, eds. (Wichmann Verlag, 1995), pp. 331-340.

G. Häusler, P. Ettl, and M. Schenk, “Limits of optical range sensors and how to exploit them,” in International Trends in Optics and Photonics ICO IV, Springer Series in Optical Sciences, Vol. 74, T. Asakura, ed. (Springer, 1999), pp. 328-342.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Fan-shaped interference fringe systems in the cross sections of defocused coherent laser beams [16]. Top: divergent fringes, bottom: convergent fringes.

Fig. 2
Fig. 2

Functional principle of the laser Doppler distance sensor (LDDS) enabling a concurrent determination of axial position z and tangential velocity v of scattering objects.

Fig. 3
Fig. 3

Two different application areas, where the tangential object velocity is known very precisely. Left: radial shape measurements of rotating objects exhibiting relatively small radius variations | Δ R ( φ ) | R ¯ . Right: axial measurements of position, shape, thickness variations, displacement, and vibrations of objects, which are rotating or laterally moving with known velocity.

Fig. 4
Fig. 4

Block diagram depicting the functional principle of the divergent fringe sensor (DFS). The gray box accounts for radial shape measurements on rotating objects corresponding to application area (I) in Subsection 2C.

Fig. 5
Fig. 5

Setup of the DFS. The pictured toothed wheel equipped with a single tooth of 2 mm width was used as a test object for comparing the measurement uncertainties of DFS and LDDS.

Fig. 6
Fig. 6

Measured gradient of the fringe spacing d along the axial position z within the measurement range of 1.1 mm length in combination with a linear regression curve.

Fig. 7
Fig. 7

Standard deviations σ z of the measured positions of the tooth tip representing the achieved position resolution depicted as a function of the axial position z, which has been normalized to the length l z of the respective measurement range.

Fig. 8
Fig. 8

Absolute deviations | Δ z | of the measured mean tooth tip positions from the default positions given by the translation stage indicating systematic position errors.

Fig. 9
Fig. 9

Experimental setup for radial shape measurement of a rotating brazen disk with the DFS and a commercial triangulation sensor used as a reference.

Fig. 10
Fig. 10

Comparison of the circumferential radius variations measured with the DFS and with the triangulation sensor for two different rotational frequencies of 10 Hz (left) and 20 Hz (right).

Fig. 11
Fig. 11

Absolute deviations between the measured average radius profiles of DFS and triangulation sensor from Fig. 10. The gray dashed lines indicate the respective average values.

Fig. 12
Fig. 12

Comparison between the measured average radius profiles for the two different rotational frequencies of 10 and 20 Hz from Fig. 10, both for the DFS (left) and for the triangulation sensor (right).

Fig. 13
Fig. 13

Measured position resolution σ z of the DFS and of the triangulation sensor at the two different rotational frequencies of 10 and 20 Hz , respectively, depicted as a function of the rotation angle.

Fig. 14
Fig. 14

Sketch of the setup for measuring the axial height profile of a rotating body exhibiting several axial steps.

Fig. 15
Fig. 15

Measured axial height profiles of DFS and triangulation sensor in dependence of the rotation angle at a rotational frequency of 20 Hz (left) and corresponding absolute deviation between the measuring data of the two sensors together with average value (right).

Fig. 16
Fig. 16

Comparison of the obtained standard deviations of the measured axial positions of the two different sensors as a function of the rotation angle for a rotational frequency of 20 Hz .

Tables (1)

Tables Icon

Table 1 Comparison Between the Obtained Position Uncertainties of DFS and LDDS a

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

q ( z ) = f D 2 f D 1 = v / d 2 ( z ) v / d 1 ( z ) = d 1 ( z ) d 2 ( z ) ,
v ( t ) = 2 π f rot ( t ) R .
d ( z ) = d 0 + m z ,
z = z 0 + m 1 d = z 0 + m 1 v f D .
σ z = σ d m d ¯ m σ f D f D .
σ f D = 3 π 1 Δ t SNR N = 3 π v Δ x SNR N
σ z d ¯ m 3 π d Δ x SNR N 3 π d ¯ 2 m Δ x SNR N .
Δ z = Δ z 0 d ¯ Δ m m 2 calibration error + d ¯ m Δ v v velocity uncertainty .
Δ v v = Δ f rot f rot + Δ R R .
Δ R = f D d 0 2 π f rot R ¯ 2 π f rot + f D m .
σ z , LDDS = 2 | q z | 1 σ f D f D .
q z = ( d 1 d 2 ) z = d 1 z d 2 d 2 z d 1 d 2 2 2 m d ¯ .
σ z , LDDS = 1 2 d ¯ m σ f D f D = 1 2 σ z , DFS .

Metrics