Abstract

There are two goals in this simulation study: (1) to show that the time variation of the bioluminescence source can cause artifacts in the tomographic images such that quantification and localization becomes impossible; and (2) to show that the a priori knowledge of the light kinetics can be used to eliminate these artifacts. These goals are motivated by the fact that the half-life of luciferase has been reported as 30 min to 2 h in vivo. We perform two-dimensional simulations. We consider a 40  mm diameter circular region with an inclusion of 6  mm diameter located 10  mm away from the center. The measurement data is simulated using a finite-element-based forward solver. We model the noncontact measurements such that four-wavelength data is collected from four 90° apart views. The results show that the ratio of the total imaging time to the half-life of the exponentially decaying bioluminescent source is the deciding factor in the reconstruction of the source. It is also demonstrated that a priori knowledge of the source kinetics is required to perform tomographic bioluminescence imaging of short half-life bioluminescent sources and the use of spatial a priori information alone is not adequate.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Contag, “Molecular imaging using visible light to reveal biological changes in the brain,” Neuroimaging Clin. N. Am. 16, 633-654 (2006).
    [CrossRef] [PubMed]
  2. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
    [CrossRef] [PubMed]
  3. C. H. Contag and B. D. Ross, “It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J Magn. Reson. Imaging 16, 378-387 (2002).
    [CrossRef] [PubMed]
  4. A. Sling and N. G. Rainov, “Bioluminescence imaging in vivo--application to cancer research,” Expert Opin. Biol. Ther. 3, 1163-1172 (2003).
  5. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289-2299 (2004).
    [CrossRef] [PubMed]
  6. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51, 2045-2053 (2006).
    [CrossRef] [PubMed]
  7. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
    [CrossRef] [PubMed]
  8. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
    [CrossRef] [PubMed]
  9. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365-367 (2006).
    [CrossRef] [PubMed]
  10. W. Cong, K. Durairaj, L. V. Wang, and G. Wang, “A born-type approximation method for bioluminescence tomography,” Med. Phys. 33, 679-686 (2006).
    [CrossRef] [PubMed]
  11. W. Cong and G. Wang, “Boundary integral method for bioluminescence tomography,” J. Biomed. Opt. 11, 020503 (2006).
    [CrossRef] [PubMed]
  12. S. Li, Q. Zhang, and H. Jiang, “Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments,” App. Opt. 45, 3390-3394 (2006).
    [CrossRef]
  13. V. Y. Soloviev, “Tomographic bioluminescence imaging with varying boundary conditions,” Appl. Opt. 46, 2778-2784 (2007).
    [CrossRef] [PubMed]
  14. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffmann, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14, 7801-7809 (2006).
    [CrossRef] [PubMed]
  15. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
    [CrossRef] [PubMed]
  16. J. Virostko, A. C. Powers, and E. D. Jansen, “Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images,” Appl. Opt. 46, 2540-2547 (2007).
    [CrossRef] [PubMed]
  17. M. Allard, D. Côte, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
    [CrossRef] [PubMed]
  18. J. S. Burgos, M. Rosol, R. A. Moats, V. Khankaldyyan, D. B. Kohn, M. D. Nelson, and W. E. Laug, “Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice,” BioTechniques 34, 1184-1188 (2003).
    [PubMed]
  19. C. Hsieh, Z. Xie, Z. Liu, J. E. Green, W. D. Martin, M. W. Datta, F. Yeung, D. Pan, and L. W. K. Chung, “A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals,” J. Mol. Endocrinol. 35, 293-304 (2005).
    [CrossRef] [PubMed]
  20. A. Hassibi, C. Contag, M. O. Vlad, M. Hafezi, T. H. Lee, R. W. Davis, and N. Pourmand, “Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays,” Biophys. Chem. 116, 175-185 (2005).
    [CrossRef] [PubMed]
  21. I. Barash and M. Reichenstein, “Real-time imaging of beta-lactoglobulin-targeted luciferase activity in the mammary glands of transgenic mice,” Mol. Reprod. Dev. 61, 42-48 (2002).
    [CrossRef] [PubMed]
  22. J. M. Ignowski and D. V. Schaffer, “Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells,” Biotechnol. Bioeng. 86, 827-834 (2004).
    [CrossRef] [PubMed]
  23. L. Nuez, W. J. Faught, and L. S. Frawley, “Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons,” Proc. Natl. Acad. Sci. U.S.A. 95, 9648-9653 (1998).
    [CrossRef]
  24. J. C. Wu, G. Sundaresan, M. Iyer, and S. S. Gambhir, “Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice,” Mol. Ther. 4, 297-306 (2001).
    [CrossRef] [PubMed]
  25. G. M. Leclerc, F. R. Boockfor, W. J. Faught, and L. S. Frawley, “Development of a destabilized firefly luciferase enzyme for measurement of gene expression,” BioTechniques 29, 590-591, 594-596, 598 (2000).
    [PubMed]
  26. G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, “The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data,” Int. J. Biomed. Imaging 1, 58601 (2006).
  27. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
    [CrossRef] [PubMed]
  28. A. Franchois and C. Pichot, “Microwave imaging--complex permittivity reconstruction with a Levenberg-Marquardt Method,” IEEE Trans. Antennas Propag. 45, 203-215 (1997).
    [CrossRef]
  29. B. D. Bok, A. N. Bice, M. Clausen, D. F. Wong, and H. N. Wagner, “Artifacts in camera based single photon emission tomography due to time activity variation,” Eur. J. Nucl. Med. 13, 439-442 (1987).
    [CrossRef] [PubMed]

2007

M. Allard, D. Côte, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[CrossRef] [PubMed]

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

J. Virostko, A. C. Powers, and E. D. Jansen, “Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images,” Appl. Opt. 46, 2540-2547 (2007).
[CrossRef] [PubMed]

V. Y. Soloviev, “Tomographic bioluminescence imaging with varying boundary conditions,” Appl. Opt. 46, 2778-2784 (2007).
[CrossRef] [PubMed]

2006

H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett. 31, 365-367 (2006).
[CrossRef] [PubMed]

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffmann, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14, 7801-7809 (2006).
[CrossRef] [PubMed]

W. Cong, K. Durairaj, L. V. Wang, and G. Wang, “A born-type approximation method for bioluminescence tomography,” Med. Phys. 33, 679-686 (2006).
[CrossRef] [PubMed]

W. Cong and G. Wang, “Boundary integral method for bioluminescence tomography,” J. Biomed. Opt. 11, 020503 (2006).
[CrossRef] [PubMed]

S. Li, Q. Zhang, and H. Jiang, “Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments,” App. Opt. 45, 3390-3394 (2006).
[CrossRef]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51, 2045-2053 (2006).
[CrossRef] [PubMed]

C. H. Contag, “Molecular imaging using visible light to reveal biological changes in the brain,” Neuroimaging Clin. N. Am. 16, 633-654 (2006).
[CrossRef] [PubMed]

G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, “The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data,” Int. J. Biomed. Imaging 1, 58601 (2006).

2005

C. Hsieh, Z. Xie, Z. Liu, J. E. Green, W. D. Martin, M. W. Datta, F. Yeung, D. Pan, and L. W. K. Chung, “A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals,” J. Mol. Endocrinol. 35, 293-304 (2005).
[CrossRef] [PubMed]

A. Hassibi, C. Contag, M. O. Vlad, M. Hafezi, T. H. Lee, R. W. Davis, and N. Pourmand, “Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays,” Biophys. Chem. 116, 175-185 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

2004

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289-2299 (2004).
[CrossRef] [PubMed]

J. M. Ignowski and D. V. Schaffer, “Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells,” Biotechnol. Bioeng. 86, 827-834 (2004).
[CrossRef] [PubMed]

2003

A. Sling and N. G. Rainov, “Bioluminescence imaging in vivo--application to cancer research,” Expert Opin. Biol. Ther. 3, 1163-1172 (2003).

J. S. Burgos, M. Rosol, R. A. Moats, V. Khankaldyyan, D. B. Kohn, M. D. Nelson, and W. E. Laug, “Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice,” BioTechniques 34, 1184-1188 (2003).
[PubMed]

2002

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef] [PubMed]

C. H. Contag and B. D. Ross, “It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J Magn. Reson. Imaging 16, 378-387 (2002).
[CrossRef] [PubMed]

I. Barash and M. Reichenstein, “Real-time imaging of beta-lactoglobulin-targeted luciferase activity in the mammary glands of transgenic mice,” Mol. Reprod. Dev. 61, 42-48 (2002).
[CrossRef] [PubMed]

2001

J. C. Wu, G. Sundaresan, M. Iyer, and S. S. Gambhir, “Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice,” Mol. Ther. 4, 297-306 (2001).
[CrossRef] [PubMed]

2000

G. M. Leclerc, F. R. Boockfor, W. J. Faught, and L. S. Frawley, “Development of a destabilized firefly luciferase enzyme for measurement of gene expression,” BioTechniques 29, 590-591, 594-596, 598 (2000).
[PubMed]

1998

L. Nuez, W. J. Faught, and L. S. Frawley, “Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons,” Proc. Natl. Acad. Sci. U.S.A. 95, 9648-9653 (1998).
[CrossRef]

1997

A. Franchois and C. Pichot, “Microwave imaging--complex permittivity reconstruction with a Levenberg-Marquardt Method,” IEEE Trans. Antennas Propag. 45, 203-215 (1997).
[CrossRef]

1995

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

1987

B. D. Bok, A. N. Bice, M. Clausen, D. F. Wong, and H. N. Wagner, “Artifacts in camera based single photon emission tomography due to time activity variation,” Eur. J. Nucl. Med. 13, 439-442 (1987).
[CrossRef] [PubMed]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51, 2045-2053 (2006).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Allard, M.

M. Allard, D. Côte, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[CrossRef] [PubMed]

Arridge, S. R.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Bachmann, M. H.

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef] [PubMed]

Bading, J. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Barash, I.

I. Barash and M. Reichenstein, “Real-time imaging of beta-lactoglobulin-targeted luciferase activity in the mammary glands of transgenic mice,” Mol. Reprod. Dev. 61, 42-48 (2002).
[CrossRef] [PubMed]

Bice, A. N.

B. D. Bok, A. N. Bice, M. Clausen, D. F. Wong, and H. N. Wagner, “Artifacts in camera based single photon emission tomography due to time activity variation,” Eur. J. Nucl. Med. 13, 439-442 (1987).
[CrossRef] [PubMed]

Bok, B. D.

B. D. Bok, A. N. Bice, M. Clausen, D. F. Wong, and H. N. Wagner, “Artifacts in camera based single photon emission tomography due to time activity variation,” Eur. J. Nucl. Med. 13, 439-442 (1987).
[CrossRef] [PubMed]

Boockfor, F. R.

G. M. Leclerc, F. R. Boockfor, W. J. Faught, and L. S. Frawley, “Development of a destabilized firefly luciferase enzyme for measurement of gene expression,” BioTechniques 29, 590-591, 594-596, 598 (2000).
[PubMed]

Burgos, J. S.

J. S. Burgos, M. Rosol, R. A. Moats, V. Khankaldyyan, D. B. Kohn, M. D. Nelson, and W. E. Laug, “Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice,” BioTechniques 34, 1184-1188 (2003).
[PubMed]

Chatziioannou, A. F.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51, 2045-2053 (2006).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Chaudhari, A. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Cherry, S. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Chung, L. W. K.

C. Hsieh, Z. Xie, Z. Liu, J. E. Green, W. D. Martin, M. W. Datta, F. Yeung, D. Pan, and L. W. K. Chung, “A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals,” J. Mol. Endocrinol. 35, 293-304 (2005).
[CrossRef] [PubMed]

Clausen, M.

B. D. Bok, A. N. Bice, M. Clausen, D. F. Wong, and H. N. Wagner, “Artifacts in camera based single photon emission tomography due to time activity variation,” Eur. J. Nucl. Med. 13, 439-442 (1987).
[CrossRef] [PubMed]

Cong, W.

W. Cong, K. Durairaj, L. V. Wang, and G. Wang, “A born-type approximation method for bioluminescence tomography,” Med. Phys. 33, 679-686 (2006).
[CrossRef] [PubMed]

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffmann, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14, 7801-7809 (2006).
[CrossRef] [PubMed]

W. Cong and G. Wang, “Boundary integral method for bioluminescence tomography,” J. Biomed. Opt. 11, 020503 (2006).
[CrossRef] [PubMed]

G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, “The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data,” Int. J. Biomed. Imaging 1, 58601 (2006).

Contag, C.

A. Hassibi, C. Contag, M. O. Vlad, M. Hafezi, T. H. Lee, R. W. Davis, and N. Pourmand, “Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays,” Biophys. Chem. 116, 175-185 (2005).
[CrossRef] [PubMed]

Contag, C. H.

C. H. Contag, “Molecular imaging using visible light to reveal biological changes in the brain,” Neuroimaging Clin. N. Am. 16, 633-654 (2006).
[CrossRef] [PubMed]

C. H. Contag and B. D. Ross, “It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J Magn. Reson. Imaging 16, 378-387 (2002).
[CrossRef] [PubMed]

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef] [PubMed]

Conti, P. S.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Coquoz, O.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

Côte, D.

M. Allard, D. Côte, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[CrossRef] [PubMed]

Darvas, F.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Datta, M. W.

C. Hsieh, Z. Xie, Z. Liu, J. E. Green, W. D. Martin, M. W. Datta, F. Yeung, D. Pan, and L. W. K. Chung, “A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals,” J. Mol. Endocrinol. 35, 293-304 (2005).
[CrossRef] [PubMed]

Davidson, L.

M. Allard, D. Côte, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[CrossRef] [PubMed]

Davis, R. W.

A. Hassibi, C. Contag, M. O. Vlad, M. Hafezi, T. H. Lee, R. W. Davis, and N. Pourmand, “Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays,” Biophys. Chem. 116, 175-185 (2005).
[CrossRef] [PubMed]

Davis, S. C.

Dazai, J.

M. Allard, D. Côte, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[CrossRef] [PubMed]

Dehghani, H.

Delpy, D. T.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Durairaj, K.

W. Cong, K. Durairaj, L. V. Wang, and G. Wang, “A born-type approximation method for bioluminescence tomography,” Med. Phys. 33, 679-686 (2006).
[CrossRef] [PubMed]

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffmann, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14, 7801-7809 (2006).
[CrossRef] [PubMed]

G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, “The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data,” Int. J. Biomed. Imaging 1, 58601 (2006).

Faught, W. J.

G. M. Leclerc, F. R. Boockfor, W. J. Faught, and L. S. Frawley, “Development of a destabilized firefly luciferase enzyme for measurement of gene expression,” BioTechniques 29, 590-591, 594-596, 598 (2000).
[PubMed]

L. Nuez, W. J. Faught, and L. S. Frawley, “Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons,” Proc. Natl. Acad. Sci. U.S.A. 95, 9648-9653 (1998).
[CrossRef]

Franchois, A.

A. Franchois and C. Pichot, “Microwave imaging--complex permittivity reconstruction with a Levenberg-Marquardt Method,” IEEE Trans. Antennas Propag. 45, 203-215 (1997).
[CrossRef]

Frawley, L. S.

G. M. Leclerc, F. R. Boockfor, W. J. Faught, and L. S. Frawley, “Development of a destabilized firefly luciferase enzyme for measurement of gene expression,” BioTechniques 29, 590-591, 594-596, 598 (2000).
[PubMed]

L. Nuez, W. J. Faught, and L. S. Frawley, “Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons,” Proc. Natl. Acad. Sci. U.S.A. 95, 9648-9653 (1998).
[CrossRef]

Gambhir, S. S.

J. C. Wu, G. Sundaresan, M. Iyer, and S. S. Gambhir, “Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice,” Mol. Ther. 4, 297-306 (2001).
[CrossRef] [PubMed]

Green, J. E.

C. Hsieh, Z. Xie, Z. Liu, J. E. Green, W. D. Martin, M. W. Datta, F. Yeung, D. Pan, and L. W. K. Chung, “A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals,” J. Mol. Endocrinol. 35, 293-304 (2005).
[CrossRef] [PubMed]

Hafezi, M.

A. Hassibi, C. Contag, M. O. Vlad, M. Hafezi, T. H. Lee, R. W. Davis, and N. Pourmand, “Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays,” Biophys. Chem. 116, 175-185 (2005).
[CrossRef] [PubMed]

Hassibi, A.

A. Hassibi, C. Contag, M. O. Vlad, M. Hafezi, T. H. Lee, R. W. Davis, and N. Pourmand, “Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays,” Biophys. Chem. 116, 175-185 (2005).
[CrossRef] [PubMed]

Henkelman, R. M.

M. Allard, D. Côte, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[CrossRef] [PubMed]

Henry, M.

Hiraoka, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Hoffmann, E.

Hsieh, C.

C. Hsieh, Z. Xie, Z. Liu, J. E. Green, W. D. Martin, M. W. Datta, F. Yeung, D. Pan, and L. W. K. Chung, “A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals,” J. Mol. Endocrinol. 35, 293-304 (2005).
[CrossRef] [PubMed]

Ignowski, J. M.

J. M. Ignowski and D. V. Schaffer, “Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells,” Biotechnol. Bioeng. 86, 827-834 (2004).
[CrossRef] [PubMed]

Iyer, M.

J. C. Wu, G. Sundaresan, M. Iyer, and S. S. Gambhir, “Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice,” Mol. Ther. 4, 297-306 (2001).
[CrossRef] [PubMed]

Jansen, E. D.

Jiang, H.

S. Li, Q. Zhang, and H. Jiang, “Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments,” App. Opt. 45, 3390-3394 (2006).
[CrossRef]

Jiang, M.

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289-2299 (2004).
[CrossRef] [PubMed]

Jiang, S.

Khankaldyyan, V.

J. S. Burgos, M. Rosol, R. A. Moats, V. Khankaldyyan, D. B. Kohn, M. D. Nelson, and W. E. Laug, “Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice,” BioTechniques 34, 1184-1188 (2003).
[PubMed]

Kohn, D. B.

J. S. Burgos, M. Rosol, R. A. Moats, V. Khankaldyyan, D. B. Kohn, M. D. Nelson, and W. E. Laug, “Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice,” BioTechniques 34, 1184-1188 (2003).
[PubMed]

Kuo, C.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

Laug, W. E.

J. S. Burgos, M. Rosol, R. A. Moats, V. Khankaldyyan, D. B. Kohn, M. D. Nelson, and W. E. Laug, “Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice,” BioTechniques 34, 1184-1188 (2003).
[PubMed]

Leahy, R. M.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Leclerc, G. M.

G. M. Leclerc, F. R. Boockfor, W. J. Faught, and L. S. Frawley, “Development of a destabilized firefly luciferase enzyme for measurement of gene expression,” BioTechniques 29, 590-591, 594-596, 598 (2000).
[PubMed]

Lee, T. H.

A. Hassibi, C. Contag, M. O. Vlad, M. Hafezi, T. H. Lee, R. W. Davis, and N. Pourmand, “Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays,” Biophys. Chem. 116, 175-185 (2005).
[CrossRef] [PubMed]

Li, S.

S. Li, Q. Zhang, and H. Jiang, “Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments,” App. Opt. 45, 3390-3394 (2006).
[CrossRef]

Li, Y.

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289-2299 (2004).
[CrossRef] [PubMed]

Liu, Z.

C. Hsieh, Z. Xie, Z. Liu, J. E. Green, W. D. Martin, M. W. Datta, F. Yeung, D. Pan, and L. W. K. Chung, “A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals,” J. Mol. Endocrinol. 35, 293-304 (2005).
[CrossRef] [PubMed]

Martin, W. D.

C. Hsieh, Z. Xie, Z. Liu, J. E. Green, W. D. Martin, M. W. Datta, F. Yeung, D. Pan, and L. W. K. Chung, “A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals,” J. Mol. Endocrinol. 35, 293-304 (2005).
[CrossRef] [PubMed]

McLennan, G.

Moats, R. A.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

J. S. Burgos, M. Rosol, R. A. Moats, V. Khankaldyyan, D. B. Kohn, M. D. Nelson, and W. E. Laug, “Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice,” BioTechniques 34, 1184-1188 (2003).
[PubMed]

Nelson, M. D.

J. S. Burgos, M. Rosol, R. A. Moats, V. Khankaldyyan, D. B. Kohn, M. D. Nelson, and W. E. Laug, “Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice,” BioTechniques 34, 1184-1188 (2003).
[PubMed]

Nuez, L.

L. Nuez, W. J. Faught, and L. S. Frawley, “Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons,” Proc. Natl. Acad. Sci. U.S.A. 95, 9648-9653 (1998).
[CrossRef]

Pan, D.

C. Hsieh, Z. Xie, Z. Liu, J. E. Green, W. D. Martin, M. W. Datta, F. Yeung, D. Pan, and L. W. K. Chung, “A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals,” J. Mol. Endocrinol. 35, 293-304 (2005).
[CrossRef] [PubMed]

Patterson, M. S.

Paulsen, K. D.

Pichot, C.

A. Franchois and C. Pichot, “Microwave imaging--complex permittivity reconstruction with a Levenberg-Marquardt Method,” IEEE Trans. Antennas Propag. 45, 203-215 (1997).
[CrossRef]

Pogue, B. W.

Pourmand, N.

A. Hassibi, C. Contag, M. O. Vlad, M. Hafezi, T. H. Lee, R. W. Davis, and N. Pourmand, “Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays,” Biophys. Chem. 116, 175-185 (2005).
[CrossRef] [PubMed]

Powers, A. C.

Qian, X.

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffmann, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14, 7801-7809 (2006).
[CrossRef] [PubMed]

G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, “The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data,” Int. J. Biomed. Imaging 1, 58601 (2006).

Rainov, N. G.

A. Sling and N. G. Rainov, “Bioluminescence imaging in vivo--application to cancer research,” Expert Opin. Biol. Ther. 3, 1163-1172 (2003).

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51, 2045-2053 (2006).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Reichenstein, M.

I. Barash and M. Reichenstein, “Real-time imaging of beta-lactoglobulin-targeted luciferase activity in the mammary glands of transgenic mice,” Mol. Reprod. Dev. 61, 42-48 (2002).
[CrossRef] [PubMed]

Rice, B. W.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

Rosol, M.

J. S. Burgos, M. Rosol, R. A. Moats, V. Khankaldyyan, D. B. Kohn, M. D. Nelson, and W. E. Laug, “Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice,” BioTechniques 34, 1184-1188 (2003).
[PubMed]

Ross, B. D.

C. H. Contag and B. D. Ross, “It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J Magn. Reson. Imaging 16, 378-387 (2002).
[CrossRef] [PubMed]

Schaffer, D. V.

J. M. Ignowski and D. V. Schaffer, “Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells,” Biotechnol. Bioeng. 86, 827-834 (2004).
[CrossRef] [PubMed]

Schweiger, M.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

Shen, H.

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffmann, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14, 7801-7809 (2006).
[CrossRef] [PubMed]

G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, “The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data,” Int. J. Biomed. Imaging 1, 58601 (2006).

Sinn, P.

Sling, A.

A. Sling and N. G. Rainov, “Bioluminescence imaging in vivo--application to cancer research,” Expert Opin. Biol. Ther. 3, 1163-1172 (2003).

Smith, D. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Soloviev, V. Y.

Sundaresan, G.

J. C. Wu, G. Sundaresan, M. Iyer, and S. S. Gambhir, “Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice,” Mol. Ther. 4, 297-306 (2001).
[CrossRef] [PubMed]

Troy, T. L.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

Virostko, J.

Vlad, M. O.

A. Hassibi, C. Contag, M. O. Vlad, M. Hafezi, T. H. Lee, R. W. Davis, and N. Pourmand, “Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays,” Biophys. Chem. 116, 175-185 (2005).
[CrossRef] [PubMed]

Wagner, H. N.

B. D. Bok, A. N. Bice, M. Clausen, D. F. Wong, and H. N. Wagner, “Artifacts in camera based single photon emission tomography due to time activity variation,” Eur. J. Nucl. Med. 13, 439-442 (1987).
[CrossRef] [PubMed]

Wang, G.

W. Cong, K. Durairaj, L. V. Wang, and G. Wang, “A born-type approximation method for bioluminescence tomography,” Med. Phys. 33, 679-686 (2006).
[CrossRef] [PubMed]

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffmann, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14, 7801-7809 (2006).
[CrossRef] [PubMed]

W. Cong and G. Wang, “Boundary integral method for bioluminescence tomography,” J. Biomed. Opt. 11, 020503 (2006).
[CrossRef] [PubMed]

G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, “The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data,” Int. J. Biomed. Imaging 1, 58601 (2006).

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289-2299 (2004).
[CrossRef] [PubMed]

Wang, L. V.

W. Cong, K. Durairaj, L. V. Wang, and G. Wang, “A born-type approximation method for bioluminescence tomography,” Med. Phys. 33, 679-686 (2006).
[CrossRef] [PubMed]

Wong, D. F.

B. D. Bok, A. N. Bice, M. Clausen, D. F. Wong, and H. N. Wagner, “Artifacts in camera based single photon emission tomography due to time activity variation,” Eur. J. Nucl. Med. 13, 439-442 (1987).
[CrossRef] [PubMed]

Wu, J. C.

J. C. Wu, G. Sundaresan, M. Iyer, and S. S. Gambhir, “Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice,” Mol. Ther. 4, 297-306 (2001).
[CrossRef] [PubMed]

Xie, Z.

C. Hsieh, Z. Xie, Z. Liu, J. E. Green, W. D. Martin, M. W. Datta, F. Yeung, D. Pan, and L. W. K. Chung, “A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals,” J. Mol. Endocrinol. 35, 293-304 (2005).
[CrossRef] [PubMed]

Xu, H.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

Yeung, F.

C. Hsieh, Z. Xie, Z. Liu, J. E. Green, W. D. Martin, M. W. Datta, F. Yeung, D. Pan, and L. W. K. Chung, “A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals,” J. Mol. Endocrinol. 35, 293-304 (2005).
[CrossRef] [PubMed]

Zhang, Q.

S. Li, Q. Zhang, and H. Jiang, “Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments,” App. Opt. 45, 3390-3394 (2006).
[CrossRef]

Annu. Rev. Biomed. Eng.

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235-260 (2002).
[CrossRef] [PubMed]

App. Opt.

S. Li, Q. Zhang, and H. Jiang, “Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments,” App. Opt. 45, 3390-3394 (2006).
[CrossRef]

Appl. Opt.

Biophys. Chem.

A. Hassibi, C. Contag, M. O. Vlad, M. Hafezi, T. H. Lee, R. W. Davis, and N. Pourmand, “Bioluminescence regenerative cycle (BRC) system: theoretical considerations for nucleic acid quantification assays,” Biophys. Chem. 116, 175-185 (2005).
[CrossRef] [PubMed]

BioTechniques

J. S. Burgos, M. Rosol, R. A. Moats, V. Khankaldyyan, D. B. Kohn, M. D. Nelson, and W. E. Laug, “Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice,” BioTechniques 34, 1184-1188 (2003).
[PubMed]

G. M. Leclerc, F. R. Boockfor, W. J. Faught, and L. S. Frawley, “Development of a destabilized firefly luciferase enzyme for measurement of gene expression,” BioTechniques 29, 590-591, 594-596, 598 (2000).
[PubMed]

Biotechnol. Bioeng.

J. M. Ignowski and D. V. Schaffer, “Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells,” Biotechnol. Bioeng. 86, 827-834 (2004).
[CrossRef] [PubMed]

Eur. J. Nucl. Med.

B. D. Bok, A. N. Bice, M. Clausen, D. F. Wong, and H. N. Wagner, “Artifacts in camera based single photon emission tomography due to time activity variation,” Eur. J. Nucl. Med. 13, 439-442 (1987).
[CrossRef] [PubMed]

Expert Opin. Biol. Ther.

A. Sling and N. G. Rainov, “Bioluminescence imaging in vivo--application to cancer research,” Expert Opin. Biol. Ther. 3, 1163-1172 (2003).

IEEE Trans. Antennas Propag.

A. Franchois and C. Pichot, “Microwave imaging--complex permittivity reconstruction with a Levenberg-Marquardt Method,” IEEE Trans. Antennas Propag. 45, 203-215 (1997).
[CrossRef]

Int. J. Biomed. Imaging

G. Wang, H. Shen, K. Durairaj, X. Qian, and W. Cong, “The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral data,” Int. J. Biomed. Imaging 1, 58601 (2006).

J Magn. Reson. Imaging

C. H. Contag and B. D. Ross, “It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J Magn. Reson. Imaging 16, 378-387 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt.

M. Allard, D. Côte, L. Davidson, J. Dazai, and R. M. Henkelman, “Combined magnetic resonance and bioluminescence imaging of live mice,” J. Biomed. Opt. 12, 034018 (2007).
[CrossRef] [PubMed]

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

W. Cong and G. Wang, “Boundary integral method for bioluminescence tomography,” J. Biomed. Opt. 11, 020503 (2006).
[CrossRef] [PubMed]

J. Mol. Endocrinol.

C. Hsieh, Z. Xie, Z. Liu, J. E. Green, W. D. Martin, M. W. Datta, F. Yeung, D. Pan, and L. W. K. Chung, “A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals,” J. Mol. Endocrinol. 35, 293-304 (2005).
[CrossRef] [PubMed]

Med. Phys.

M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995).
[CrossRef] [PubMed]

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289-2299 (2004).
[CrossRef] [PubMed]

W. Cong, K. Durairaj, L. V. Wang, and G. Wang, “A born-type approximation method for bioluminescence tomography,” Med. Phys. 33, 679-686 (2006).
[CrossRef] [PubMed]

Mol. Reprod. Dev.

I. Barash and M. Reichenstein, “Real-time imaging of beta-lactoglobulin-targeted luciferase activity in the mammary glands of transgenic mice,” Mol. Reprod. Dev. 61, 42-48 (2002).
[CrossRef] [PubMed]

Mol. Ther.

J. C. Wu, G. Sundaresan, M. Iyer, and S. S. Gambhir, “Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice,” Mol. Ther. 4, 297-306 (2001).
[CrossRef] [PubMed]

Neuroimaging Clin. N. Am.

C. H. Contag, “Molecular imaging using visible light to reveal biological changes in the brain,” Neuroimaging Clin. N. Am. 16, 633-654 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol. 51, 2045-2053 (2006).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

L. Nuez, W. J. Faught, and L. S. Frawley, “Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons,” Proc. Natl. Acad. Sci. U.S.A. 95, 9648-9653 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Decay of source strength for different half-lives. (a) Decay of source during the total imaging time. (b) Decay of source within 10 h.

Fig. 2
Fig. 2

(Color online) Bioluminescent source distribution is static in time. (a) True source distribution. (b) Reconstructed bioluminescent source distribution. (c) Reconstructed bioluminescent source distribution using spatial a priori knowledge. Please note that the reconstruction results would be improved if the number of wavelengths and the number of views are increased. However, this would increase the imaging time.

Fig. 3
Fig. 3

(Color online) Reconstructed time-dependent bioluminescent source distributions. Note that the time factor, T, shows how fast the data is collected. High time factor corresponds to a slow data acquisition. For the T values of 0.53 (the total imaging time is approximately equal to the half of the half-life of the source) and 1.01 (the total imaging time is approximately equal to the half-life of the source), it is not possible to recover the source.

Fig. 4
Fig. 4

(Color online) Reconstructed time-dependent bioluminescent source distributions for T = 1.01 case using (a) decay corrected data, (b) spatial priors, (c) decay corrected data and spatial priors. Please note that after the decay correction, the data is equivalent to the static case. Therefore, the reconstructions with decay correction result in similar images.

Fig. 5
Fig. 5

(Color online) Bioluminescent kinetics that are known a priori with (a) 2%, (b) 10%, and (c) 20% noise and the corresponding reconstructions for the T = 1.01 case.

Tables (2)

Tables Icon

Table 1 Percentage Error in Reconstructed Source Position for Varying Time Factor a

Tables Icon

Table 2 Percentage Error in Reconstructed Source Strength for Varying Time Factor a

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

40   mm
6   mm
10   mm
· D ( r ) ϕ ( r ) ( μ a ) ϕ ( r ) = S ( r ) ,
ϕ ( r )
S ( r )
D ( r )
μ a
D ( r ) = 1 3 [ μ a ( r ) + μ s ( r ) ] ,
μ s
ϕ ( m ) 2 A F ( m ) = 0 ,
F ( m ) = D n ^ · ϕ ( m )
Ω
n ^
χ 2 = i M ( ϕ i ϕ c , i ( S ( r ) ) σ i ) 2 ,
ϕ c
σ i
S = i = 1 n a i b i ,
a i
b i
a = ( W T W + α I ) 1 W T Φ ,
a = ( W ˜ T W ˜ + α I ) 1 W ˜ T Φ ˜ ,
W ˜ = [ W λ 1 ; W λ 2 ; ; W λ k ]
Φ ˜ = [ Φ λ 1 ; Φ λ 2 ; ; Φ λ k ]
α = 0.0001 Tr ( W T W ) N ,
t p
ψ = ϕ 2 t p / τ ,
t p
α r = 0.0001 Tr ( W T W ) r N r ,
Tr ( W T W ) r
40   mm
6   mm
460 630   nm
630   nm
μ a = 0.0281
0.0082 mm 1
μ s = 1 .67
1.59 mm 1
T = total   imaging   time half-life ,
T = 1.01
T = 1.01
T = 1.01
T = 1.01

Metrics