Abstract

A multiwavelength backward-mode planar photoacoustic scanner for 3D imaging of soft tissues to depths of several millimeters with a spatial resolution in the tens to hundreds of micrometers range is described. The system comprises a tunable optical parametric oscillator laser system that provides nanosecond laser pulses between 600 and 1200  nm for generating the photoacoustic signals and an optical ultrasound mapping system based upon a Fabry–Perot polymer film sensor for detecting them. The system enables photoacoustic signals to be mapped in 2D over a 50  mm diameter aperture in steps of 10  μm with an optically defined element size of 64  μm. Two sensors were used, one with a 22  μm thick polymer film spacer and the other with a 38  μm thick spacer providing 3  dB acoustic bandwidths of 39 and 22  MHz, respectively. The measured noise equivalent pressure of the 38  μm sensor was 0.21  kPa over a 20  MHz measurement bandwidth. The instrument line-spread function (LSF) was measured as a function of position and the minimum lateral and vertical LSFs found to be 38 and 15  μm, respectively. To demonstrate the ability of the system to provide high-resolution 3D images, a range of absorbing objects were imaged. Among these was a blood vessel phantom that comprised a network of blood filled tubes of diameters ranging from 62 to 300  μm immersed in an optically scattering liquid. In addition, to demonstrate the applicability of the system to spectroscopic imaging, a phantom comprising tubes filled with dyes of different spectral characteristics was imaged at a range of wavelengths. It is considered that this type of instrument may provide a practicable alternative to piezoelectric-based photoacoustic systems for high-resolution structural and functional imaging of the skin microvasculature and other superficial structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
    [CrossRef]
  2. J. Laufer, C. E. Elwell, D. T. Delpy, and P. C. Beard, "In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution," Phys. Med. Biol. 50, 4409-4428 (2005).
    [CrossRef] [PubMed]
  3. J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168 (2007).
    [CrossRef]
  4. A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, "Optoacoustic imaging of blood for visualization and diagnostics of breast cancer," Proc. SPIE 4618, 81-94 (2002).
    [CrossRef]
  5. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, "The Twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
    [CrossRef] [PubMed]
  6. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-850 (2006).
    [CrossRef] [PubMed]
  7. J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 034032 (2006).
    [CrossRef]
  8. J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
    [CrossRef] [PubMed]
  9. H. F. Zhang, K. Maslov, G. Soica, and L. V. Wang, "Imaging accute thermal burns by photoacoustic microscopy," J. Biomed. Opt. 11, 054033 (2006).
    [CrossRef] [PubMed]
  10. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
    [CrossRef] [PubMed]
  11. E. Z. Zhang, J. Laufer, and P. C. Beard, "Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system," Proc SPIE 6437, 643710S (2007).
  12. R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic optical molecular imaging of small animals," Molecular Imaging 2, 113-123 (2003).
    [CrossRef] [PubMed]
  13. L. Li, R. J. Zemp, L. Gina, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo,"J. Biomed. Opt. 12, 020504 (2007).
    [CrossRef] [PubMed]
  14. X. Xie, M.-L. Li, J.-T. Oh, G. Ku, C. Wang, C. Li, S. Similache, G. F. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic molecular imaging of small animals in vivo,"Proc. SPIE 6086608606 (2006).
    [CrossRef]
  15. X. Wang, Y. Pang, and G. Ku, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003).
    [CrossRef] [PubMed]
  16. R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, "Thermoacoustic CT with radio waves: a medical imaging paradigm," Radiology 211, 275-278 (1999).
    [PubMed]
  17. J. J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, and M. Frenz, "Transparent ITO coated PVDF transducer for optoacoustic depth profiling," Opt. Commun. 253, 401-406 (2005).
    [CrossRef]
  18. R. G. Kolkmann, E. Hondebrink, W. Steenbergen, and F. F. De Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
    [CrossRef]
  19. P. Burgholzer, C. Hoffer, G. Paltauf, M. Haltmeier, and O. Scherzer, "Thermoacoustic tomography with integrating and area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).
    [CrossRef] [PubMed]
  20. K. Koestli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, "Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction," Appl. Opt. 40, 3800-3809 (2001).
    [CrossRef]
  21. B. P. Payne, V. Venugopalan, B. B. Mikc, and N. S. Nishioka, "Optoacoustic tomography using time resolved interferometric detection of surface displacement," J. Biomed. Opt. 8, 273-280 (2003).
    [CrossRef] [PubMed]
  22. J. D. Hamilton and M. O'Donnell, "High frequency ultrasound imaging with optical arrays," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 216-235 (1998).
    [CrossRef]
  23. V. Wilkens and Ch. Koch, "Optical multilayer detection array for fast ultrasonic field mapping," Opt. Lett. 24, 1026-1028 (1999).
    [CrossRef]
  24. P. C. Beard and T. N. Mills, "An optical fibre sensor for the detection of laser generated ultrasound in arterial tissues," Proc. SPIE 2331, 112-122 (1994).
    [CrossRef]
  25. P. C. Beard, F. Perennes, and T. N. Mills, "Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575-1582 (1999).
    [CrossRef]
  26. Y. Uno and K. Nakamura, "Pressure sensitivity of a fibre-optic microprobe for high frequency ultrasonic field," Jpn. J. Appl. Phys. , Part 1 38, 3120-3123 (1999).
    [CrossRef]
  27. S. Askenazi, R. Witte, and M. O'Donnell, "High frequency ultrasound imaging using a Fabry-Perot etalon," Proc. SPIE 5697, 243-250 (2005).
    [CrossRef]
  28. P. C. Beard, A. Hurrell, and T. N. Mills, "Characterisation of a polymer film optical fibre hydrophone for the measurement of ultrasound fields for use in the range 1-30 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256-264 (2000).
    [CrossRef]
  29. E. Z. Zhang, B. T. Cox, and P. C. Beard, "Ultra high sensitivity, wideband Fabry Perot ultrasound sensors as an alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection," Proc. SPIE 5320, 222-229 (2004).
    [CrossRef]
  30. P. C. Beard, E. Z. Zhang, and B. T. Cox, "Transparent Fabry-Perot polymer film ultrasound array for backward-mode photoacoustic imaging," Proc. SPIE 5320, 230-237 (2004).
    [CrossRef]
  31. P. C. Beard, "2D ultrasound receive array using an angle-tuned Fabry Perot polymer film sensor for transducer field characterisation and transmission ultrasound imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1002-1012 (2005).
    [CrossRef] [PubMed]
  32. P. C. Beard, "Photoacoustic imaging of blood vessel equivalent phantoms," Proc. SPIE 4618, 54-62 (2002).
    [CrossRef]
  33. E. Zhang and P. C. Beard, "Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focussed beam to interrogate a Fabry Perot polymer film sensor," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1330-1338 (2006).
    [CrossRef] [PubMed]
  34. E. Z. Zhang and P. C. Beard, "2D backward-mode photoacoustic imaging system for NIR (650-1200 nm) spectroscopic biomedical applications," Proc. SPIE 6086, 60860H (2006).
    [CrossRef]
  35. E. Z. Zhang, J. Laufer, and P. C. Beard, "Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system," Proc. SPIE 6437, 643710S (2007).
  36. H. Yasuda, Plasma Polymerisation (Academic, 1985).
  37. V. Kozhushko, T. Kholkhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for two dimensional optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004).
    [CrossRef] [PubMed]
  38. B. T. Cox and P. C. Beard, "Frequency dependent directivity of a planar Fabry Perot polymer film ultrasound sensor," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 394-404 (2007).
    [CrossRef] [PubMed]
  39. K. Koestli, M. Frenz, H. Bebie, and H. Weber, "Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med. Biol. 46, 1863-1872 (2001).
    [CrossRef]
  40. K. P. Köstli and P. C. Beard, "Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response," Appl. Opt. 42, 1899-1908 (2003).
    [CrossRef] [PubMed]
  41. British Standard, "Safety of laser products. Equipment classification, requirements and user's guide," BS EN60825-1 (The British Standard Institute, 1994).
  42. T. A. Troy, D. L. Page, and E. M. Sevic-Mucraca, "Optical properties of normal and diseased breast tissues: prognosis for optical mammography," J. Biomed Opt. 1, 342-355 (1996).
    [CrossRef]
  43. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
    [CrossRef] [PubMed]
  44. K. Mazlov, H. F. Zhang, and L. V. Wang, "Portable real-time photoacoustic microscopy," Proc. SPIE 6437, 643727 (2007).
    [CrossRef]
  45. T. J. Allen and P. C. Beard, "Pulsed NIR laser diode excitation system for biomedical photoacoustic imaging," Opt. Lett. 31, 3462-3464 (2006).
    [CrossRef] [PubMed]
  46. M. Lamont and P. C. Beard, "2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot polymer film sensor," Electron. Lett. 42, 187-189 (2006).
    [CrossRef]
  47. B. T. Cox, S. R. Arridge, K. P. Kostli, and P. C. Beard, "2D quantitative photoacoustic image reconstruction of absorption distributions in scattering media using a simple recursive method," Appl. Opt. 45, 1866-1875 (2006).
    [CrossRef] [PubMed]

2007

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

L. Li, R. J. Zemp, L. Gina, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo,"J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

E. Z. Zhang, J. Laufer, and P. C. Beard, "Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system," Proc SPIE 6437, 643710S (2007).

E. Z. Zhang, J. Laufer, and P. C. Beard, "Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system," Proc. SPIE 6437, 643710S (2007).

B. T. Cox and P. C. Beard, "Frequency dependent directivity of a planar Fabry Perot polymer film ultrasound sensor," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 394-404 (2007).
[CrossRef] [PubMed]

K. Mazlov, H. F. Zhang, and L. V. Wang, "Portable real-time photoacoustic microscopy," Proc. SPIE 6437, 643727 (2007).
[CrossRef]

2006

T. J. Allen and P. C. Beard, "Pulsed NIR laser diode excitation system for biomedical photoacoustic imaging," Opt. Lett. 31, 3462-3464 (2006).
[CrossRef] [PubMed]

M. Lamont and P. C. Beard, "2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot polymer film sensor," Electron. Lett. 42, 187-189 (2006).
[CrossRef]

B. T. Cox, S. R. Arridge, K. P. Kostli, and P. C. Beard, "2D quantitative photoacoustic image reconstruction of absorption distributions in scattering media using a simple recursive method," Appl. Opt. 45, 1866-1875 (2006).
[CrossRef] [PubMed]

X. Xie, M.-L. Li, J.-T. Oh, G. Ku, C. Wang, C. Li, S. Similache, G. F. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic molecular imaging of small animals in vivo,"Proc. SPIE 6086608606 (2006).
[CrossRef]

M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-850 (2006).
[CrossRef] [PubMed]

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 034032 (2006).
[CrossRef]

H. F. Zhang, K. Maslov, G. Soica, and L. V. Wang, "Imaging accute thermal burns by photoacoustic microscopy," J. Biomed. Opt. 11, 054033 (2006).
[CrossRef] [PubMed]

E. Zhang and P. C. Beard, "Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focussed beam to interrogate a Fabry Perot polymer film sensor," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1330-1338 (2006).
[CrossRef] [PubMed]

E. Z. Zhang and P. C. Beard, "2D backward-mode photoacoustic imaging system for NIR (650-1200 nm) spectroscopic biomedical applications," Proc. SPIE 6086, 60860H (2006).
[CrossRef]

2005

P. C. Beard, "2D ultrasound receive array using an angle-tuned Fabry Perot polymer film sensor for transducer field characterisation and transmission ultrasound imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1002-1012 (2005).
[CrossRef] [PubMed]

S. Askenazi, R. Witte, and M. O'Donnell, "High frequency ultrasound imaging using a Fabry-Perot etalon," Proc. SPIE 5697, 243-250 (2005).
[CrossRef]

P. Burgholzer, C. Hoffer, G. Paltauf, M. Haltmeier, and O. Scherzer, "Thermoacoustic tomography with integrating and area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).
[CrossRef] [PubMed]

J. Laufer, C. E. Elwell, D. T. Delpy, and P. C. Beard, "In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution," Phys. Med. Biol. 50, 4409-4428 (2005).
[CrossRef] [PubMed]

J. J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, and M. Frenz, "Transparent ITO coated PVDF transducer for optoacoustic depth profiling," Opt. Commun. 253, 401-406 (2005).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, "The Twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

2004

V. Kozhushko, T. Kholkhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for two dimensional optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004).
[CrossRef] [PubMed]

E. Z. Zhang, B. T. Cox, and P. C. Beard, "Ultra high sensitivity, wideband Fabry Perot ultrasound sensors as an alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection," Proc. SPIE 5320, 222-229 (2004).
[CrossRef]

P. C. Beard, E. Z. Zhang, and B. T. Cox, "Transparent Fabry-Perot polymer film ultrasound array for backward-mode photoacoustic imaging," Proc. SPIE 5320, 230-237 (2004).
[CrossRef]

2003

B. P. Payne, V. Venugopalan, B. B. Mikc, and N. S. Nishioka, "Optoacoustic tomography using time resolved interferometric detection of surface displacement," J. Biomed. Opt. 8, 273-280 (2003).
[CrossRef] [PubMed]

R. G. Kolkmann, E. Hondebrink, W. Steenbergen, and F. F. De Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic optical molecular imaging of small animals," Molecular Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, and G. Ku, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

K. P. Köstli and P. C. Beard, "Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response," Appl. Opt. 42, 1899-1908 (2003).
[CrossRef] [PubMed]

2002

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
[CrossRef] [PubMed]

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, "Optoacoustic imaging of blood for visualization and diagnostics of breast cancer," Proc. SPIE 4618, 81-94 (2002).
[CrossRef]

P. C. Beard, "Photoacoustic imaging of blood vessel equivalent phantoms," Proc. SPIE 4618, 54-62 (2002).
[CrossRef]

2001

K. Koestli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, "Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction," Appl. Opt. 40, 3800-3809 (2001).
[CrossRef]

K. Koestli, M. Frenz, H. Bebie, and H. Weber, "Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med. Biol. 46, 1863-1872 (2001).
[CrossRef]

2000

P. C. Beard, A. Hurrell, and T. N. Mills, "Characterisation of a polymer film optical fibre hydrophone for the measurement of ultrasound fields for use in the range 1-30 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256-264 (2000).
[CrossRef]

1999

V. Wilkens and Ch. Koch, "Optical multilayer detection array for fast ultrasonic field mapping," Opt. Lett. 24, 1026-1028 (1999).
[CrossRef]

P. C. Beard, F. Perennes, and T. N. Mills, "Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575-1582 (1999).
[CrossRef]

Y. Uno and K. Nakamura, "Pressure sensitivity of a fibre-optic microprobe for high frequency ultrasonic field," Jpn. J. Appl. Phys. , Part 1 38, 3120-3123 (1999).
[CrossRef]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, "Thermoacoustic CT with radio waves: a medical imaging paradigm," Radiology 211, 275-278 (1999).
[PubMed]

1998

J. D. Hamilton and M. O'Donnell, "High frequency ultrasound imaging with optical arrays," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 216-235 (1998).
[CrossRef]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

1996

T. A. Troy, D. L. Page, and E. M. Sevic-Mucraca, "Optical properties of normal and diseased breast tissues: prognosis for optical mammography," J. Biomed Opt. 1, 342-355 (1996).
[CrossRef]

1994

P. C. Beard and T. N. Mills, "An optical fibre sensor for the detection of laser generated ultrasound in arterial tissues," Proc. SPIE 2331, 112-122 (1994).
[CrossRef]

Appl. Opt.

Electron. Lett.

M. Lamont and P. C. Beard, "2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot polymer film sensor," Electron. Lett. 42, 187-189 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. G. Kolkmann, E. Hondebrink, W. Steenbergen, and F. F. De Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

P. Burgholzer, C. Hoffer, G. Paltauf, M. Haltmeier, and O. Scherzer, "Thermoacoustic tomography with integrating and area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005).
[CrossRef] [PubMed]

J. D. Hamilton and M. O'Donnell, "High frequency ultrasound imaging with optical arrays," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 216-235 (1998).
[CrossRef]

P. C. Beard, F. Perennes, and T. N. Mills, "Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575-1582 (1999).
[CrossRef]

P. C. Beard, A. Hurrell, and T. N. Mills, "Characterisation of a polymer film optical fibre hydrophone for the measurement of ultrasound fields for use in the range 1-30 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256-264 (2000).
[CrossRef]

E. Zhang and P. C. Beard, "Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focussed beam to interrogate a Fabry Perot polymer film sensor," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1330-1338 (2006).
[CrossRef] [PubMed]

P. C. Beard, "2D ultrasound receive array using an angle-tuned Fabry Perot polymer film sensor for transducer field characterisation and transmission ultrasound imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1002-1012 (2005).
[CrossRef] [PubMed]

B. T. Cox and P. C. Beard, "Frequency dependent directivity of a planar Fabry Perot polymer film ultrasound sensor," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 394-404 (2007).
[CrossRef] [PubMed]

J. Acoust. Soc. Am.

V. Kozhushko, T. Kholkhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for two dimensional optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004).
[CrossRef] [PubMed]

J. Biomed Opt.

T. A. Troy, D. L. Page, and E. M. Sevic-Mucraca, "Optical properties of normal and diseased breast tissues: prognosis for optical mammography," J. Biomed Opt. 1, 342-355 (1996).
[CrossRef]

J. Biomed. Opt.

B. P. Payne, V. Venugopalan, B. B. Mikc, and N. S. Nishioka, "Optoacoustic tomography using time resolved interferometric detection of surface displacement," J. Biomed. Opt. 8, 273-280 (2003).
[CrossRef] [PubMed]

L. Li, R. J. Zemp, L. Gina, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo,"J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 034032 (2006).
[CrossRef]

H. F. Zhang, K. Maslov, G. Soica, and L. V. Wang, "Imaging accute thermal burns by photoacoustic microscopy," J. Biomed. Opt. 11, 054033 (2006).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys.

Y. Uno and K. Nakamura, "Pressure sensitivity of a fibre-optic microprobe for high frequency ultrasonic field," Jpn. J. Appl. Phys. , Part 1 38, 3120-3123 (1999).
[CrossRef]

Lasers Surg. Med.

J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002).
[CrossRef] [PubMed]

Molecular Imaging

R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic optical molecular imaging of small animals," Molecular Imaging 2, 113-123 (2003).
[CrossRef] [PubMed]

Nat. Biotechnol.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-850 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003).
[CrossRef] [PubMed]

Opt. Commun.

J. J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, and M. Frenz, "Transparent ITO coated PVDF transducer for optoacoustic depth profiling," Opt. Commun. 253, 401-406 (2005).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998).
[CrossRef] [PubMed]

K. Koestli, M. Frenz, H. Bebie, and H. Weber, "Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med. Biol. 46, 1863-1872 (2001).
[CrossRef]

J. Laufer, C. E. Elwell, D. T. Delpy, and P. C. Beard, "In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution," Phys. Med. Biol. 50, 4409-4428 (2005).
[CrossRef] [PubMed]

J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168 (2007).
[CrossRef]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, "The Twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

Proc SPIE

E. Z. Zhang, J. Laufer, and P. C. Beard, "Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system," Proc SPIE 6437, 643710S (2007).

Proc. SPIE

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, "Optoacoustic imaging of blood for visualization and diagnostics of breast cancer," Proc. SPIE 4618, 81-94 (2002).
[CrossRef]

X. Xie, M.-L. Li, J.-T. Oh, G. Ku, C. Wang, C. Li, S. Similache, G. F. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic molecular imaging of small animals in vivo,"Proc. SPIE 6086608606 (2006).
[CrossRef]

P. C. Beard and T. N. Mills, "An optical fibre sensor for the detection of laser generated ultrasound in arterial tissues," Proc. SPIE 2331, 112-122 (1994).
[CrossRef]

S. Askenazi, R. Witte, and M. O'Donnell, "High frequency ultrasound imaging using a Fabry-Perot etalon," Proc. SPIE 5697, 243-250 (2005).
[CrossRef]

E. Z. Zhang, B. T. Cox, and P. C. Beard, "Ultra high sensitivity, wideband Fabry Perot ultrasound sensors as an alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection," Proc. SPIE 5320, 222-229 (2004).
[CrossRef]

P. C. Beard, E. Z. Zhang, and B. T. Cox, "Transparent Fabry-Perot polymer film ultrasound array for backward-mode photoacoustic imaging," Proc. SPIE 5320, 230-237 (2004).
[CrossRef]

P. C. Beard, "Photoacoustic imaging of blood vessel equivalent phantoms," Proc. SPIE 4618, 54-62 (2002).
[CrossRef]

E. Z. Zhang and P. C. Beard, "2D backward-mode photoacoustic imaging system for NIR (650-1200 nm) spectroscopic biomedical applications," Proc. SPIE 6086, 60860H (2006).
[CrossRef]

E. Z. Zhang, J. Laufer, and P. C. Beard, "Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system," Proc. SPIE 6437, 643710S (2007).

K. Mazlov, H. F. Zhang, and L. V. Wang, "Portable real-time photoacoustic microscopy," Proc. SPIE 6437, 643727 (2007).
[CrossRef]

Radiology

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, "Thermoacoustic CT with radio waves: a medical imaging paradigm," Radiology 211, 275-278 (1999).
[PubMed]

Rev. Sci. Instrum.

M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006).
[CrossRef]

Other

H. Yasuda, Plasma Polymerisation (Academic, 1985).

British Standard, "Safety of laser products. Equipment classification, requirements and user's guide," BS EN60825-1 (The British Standard Institute, 1994).

Supplementary Material (6)

» Media 1: AVI (656 KB)     
» Media 2: AVI (169 KB)     
» Media 3: AVI (1154 KB)     
» Media 4: AVI (1730 KB)     
» Media 5: AVI (975 KB)     
» Media 6: AVI (1516 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Schematic of FP sensor head. The sensing structure comprises a 38   μm polymer (Parylene C) film spacer sandwiched between two dichroic mirrors forming an FPI. The latter overlays a PMMA backing stub that is wedged to eliminate parasitic interference between light reflected from its upper surface and the FPI.

Fig. 2
Fig. 2

(Color online) Transmission characteristics of the dichroic dielectric coatings used to form the mirrors of the FPI. The coatings provide the high reflectivity (95%) required to form a high-finesse FPI between 1500 and 1650   nm (the sensor interrogation band) but are highly transmissive between 600 and 1200   nm (the excitation passband) enabling photoacoustic excitation laser pulses in this wavelength range to be transmitted through the sensor.

Fig. 3
Fig. 3

(Color online) Photograph of sensor head shown in Fig. 1 (wedge side uppermost) under narrowband visible illumination showing concentric elliptical FPI transmission fringes and the transparent nature of the sensor head.

Fig. 4
Fig. 4

(Color online) Backward-mode multiwavelength photoacoustic scanner. A tunable OPO laser system provides nanosecond optical pulses for exciting the photoacoustic waves within the target, which is placed underneath and in acoustic contact with the FP sensor head. A second laser operating at 1550   nm provides a focused interrogation laser beam that is raster scanned over the surface of the sensor to map the incident photoacoustic waves.

Fig. 5
Fig. 5

Reflectivity R ( λ ) and normalized phase sensitivity S ¯ ( λ ) as function of wavelength for the 38   μm FP sensor. The optimum bias point of the sensor is the wavelength λ opt at which S ¯ ( λ ) is a maximum. At this wavelength the reflected optical power modulation due to an acoustically induced phase shift is a maximum and the sensor is said to be optimally biased.

Fig. 6
Fig. 6

FP sensor frequency response. Predicted (solid curves) and measured (circles) responses for the two sensor thicknesses used in this study: l = 38   μm (top) and 22   μm (bottom).

Fig. 7
Fig. 7

(Color online) Experimental arrangement for measuring the instrument LSF. The target is a matrix of highly absorbing discrete polymer ribbons, immersed in Intralipid ( μ s = 1 mm −1 ) , and aligned parallel to the detection plane. The excitation laser beam (not shown) is transmitted through the sensor into the target. The photoacoustic signals emitted by the target are mapped by scanning the sensor interrogation beam along a line of length 40   mm in steps of 20   µm in the x direction.

Fig. 8
Fig. 8

(a) Map of photoacoustic signals p ( x , t ) generated in the target shown in Fig. 7. Line scan length x = 40   mm , step size d x = 20   μm , spot diameter d = 64   μm , temporal sampling interval d t = 4   ns , incident fluence Φ = 2   mJ / cm 2 , and pulse duration t p = 8   ns . (b) Two-dimensional photoacoustic image of initial pressure distribution p o ( x , z ) reconstructed from p ( x , t ) .

Fig. 9
Fig. 9

Estimation of instrument LSF. Image (top) shows an expanded view of the feature at x = 17.10   mm and z = 3.45   mm in Fig. 8(b). A horizontal profile through the center of the feature ( z = 3.45   mm ) is shown below. The rising edge of the profile represents the edge spread function (ESF) and the lateral LSF is given by the FWHM of the derivative of the ESF. The vertical LSF is obtained from the FWHM of the vertical profile through the center ( x = 17.10 ) of the feature (shown right).

Fig. 10
Fig. 10

Contour plots showing x–z dependence of lateral LSF (in micrometer) for (a) 38 and (b) 22   μm sensor. Laser pulse duration = 5.6   ns .

Fig. 11
Fig. 11

(Color online) Arrangement of dye-filled knotted tube with respect to the FP sensor head. The tube is immersed in Intralipid ( μ s = 1 mm −1 ) and positioned approximately 3   mm above the detection plane.

Fig. 12
Fig. 12

(Multimedia online; ao.osa.org) (Color online) Photoacoustic images of dye-filled knotted tube (inner diameter = 0.3   mm , outer diameter = 0.7   mm , μ a > 10 mm −1 ) immersed in Intralipid ( μ s = 1 mm −1 ) using the arrangement shown in Fig. 11. Top left: photograph of tube prior to immersion in Intralipid. Top right: x–y maximum intensity projection (MITP) of 3D photoacoustic image. Lower left: y–z MITP, lower right: x–z MITP, far right: close-up of x–y MITP showing that the dye-filled lumen can be distinguished from the outer wall of the tube. Scan area = 11   mm × 11   mm , step size d x = d y = 100   μm , spot diameter d = 64   μm , temporal sampling interval d t = 20   ns , incident laser fluence Φ = 12 mJ / cm 2 , λ=1064   nm , and pulse duration t p = 5.6   ns .

Fig. 13
Fig. 13

(Multimedia online; ao.osa.org) (Color online) Photoacoustic images of various absorbing objects obtained using the arrangement shown in Fig. 11. Each object was immersed in Intralipid ( μ s = 1 mm −1 ) and positioned approximately 2   mm above the detection plane. The inner and outer diameter of the tubes was 0.3 and 0.7   mm , respectively. Incident laser fluence Φ = 12 mJ / cm 2 , λ=1064   nm , and pulse duration t p = 5.6   ns . Top row: photographs of objects prior to immersion in Intralipid. Lower row: reconstructed photoacoustic images (x–y MITPs). From left to right: (a) twisted black polymer ribbon. Scan area = 10   mm × 20   mm , d x = 100   μm , d y = 200   μm , and d t = 20   ns . (b) Silicone rubber tubes filled with dye: μ a = 2.7 (vertical tube) and μ a = 4 mm −1 (looped tube). Scan area = 8   mm × 7   mm , d x = 60   μm , d y = 60   μm , d t = 20   ns . (c) Silicone rubber tube filled with dye ( μ a = 2.7 mm −1 ) and tied with human hair. Scan area = 5   mm × 4 mm , d x = 50   μm , d y = 50   μm , and dt = 8 ns. (d) Twisted pair of silicone rubber tubes filled with dye ( μ a = 2.7 mm −1 ) . Scan area = 10   mm × 5   mm , d x = 50   μm , d y = 100   μm , dt = 8 ns.

Fig. 14
Fig. 14

(Color online) Photograph of blood vessel tissue phantom comprising a network of tubes filled with human blood. The inner diameters of the tubes range from 62 to 300   μm . The white liquid in the background is the Intralipid solution into which the structure was immersed. The dotted line indicates the region of the phantom that was imaged.

Fig. 15
Fig. 15

(Multimedia online; ao.osa.org) (Color online) Photoacoustic image of blood vessel phantom. (a) Photograph showing region of phantom (prior to immersion in Intralipid) that was imaged. (b) Volume rendered 3D photoacoustic image (lateral view). The most superficial tube (A) is located at a vertical distance z = 0.9   mm from the detection plane and the deepest (B) was at z = 5.5   mm . Scan area = 14   mm × 14   mm , scan step size d x = d y = 140   μm , spot diameter a = 64   μm , and temporal sampling interval d t = 20   ns . Incident laser fluence Φ = 6.7 mJ / cm 2 , λ= 800   nm , and pulse duration t p = 8   ns .

Fig. 16
Fig. 16

(Multimedia online; ao.osa.org) (Color online) Alternative viewing angle of volume rendered photoacoustic image shown in Fig. 15(b). Positive z represents the vertical distance from the detection plane. A represents the most superficial tube ( z = 0.9   mm ) and B the deepest ( z = 5.5   mm ) .

Fig. 17
Fig. 17

(Color online) Absorption coefficient spectra of three NIR dyes: ADS645W, ADS740WS, and ADS830WS.

Fig. 18
Fig. 18

Two-dimensional photoacoustic images obtained at three wavelengths (643, 746, and 822   nm ) of a phantom comprising three tubes filled with different dyes. The absorption spectra of each dye is shown in Fig. 17. The left-hand tube contains ADS645W, the center tube ADS740WS, and the right-hand tube ADS830WS. Line scan length x = 25   mm , step size d x = 20   μm , and spot size a = 64   μm . Temporal sampling interval d t = 4   ns . Incident fluence Φ = 7 mJ / cm 2 , pulse duration t p = 8   ns .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NEP = N S o ,

Metrics