Abstract

Two laser-based instruments for carbon sequestration site monitoring have been developed and tested at a controlled carbon dioxide (CO2) release facility. The first instrument uses a temperature tunable distributed feedback (DFB) diode laser capable of accessing the 2.00272.0042μm spectral region that contains three CO2 absorption lines and is used for aboveground atmospheric CO2 concentration measurements. The second instrument also uses a temperature tunable DFB diode laser capable of accessing the 2.00322.0055μm spectral region that contains five CO2 absorption lines for underground CO2 soil gas concentration measurements. The performance of these instruments for carbon sequestration site monitoring was studied using a newly developed controlled CO2 release facility. A 0.3 ton CO2/day injection experiment was performed from 3–10 August 2007. The aboveground differential absorption instrument measured an average atmospheric CO2 concentration of 618 parts per million (ppm) over the CO2 injection site compared with an average background atmospheric CO2 concentration of 448  ppm demonstrating this instrument's capability for carbon sequestration site monitoring. The underground differential absorption instrument measured a CO2 soil gas concentration of 100,000 ppm during the CO2 injection, a factor of 25 greater than the measured background CO2 soil gas concentration of 4000 ppm demonstrating this instrument's capability for carbon sequestration site monitoring

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. M. Barnola, D. Raynaud, Y. S. Korotkevich, and C. Lorius, "Vostok ice core provides 160,000-year record of atmospheric CO2," Nature 329, 408-414 (1987).
    [CrossRef]
  2. K. M. Cuffey and F. Vimeux, "Covariation of carbon dioxide and temperature from the Vostok ice core after deuterium-excess correction," Nature 412, 523-527 (2001).
    [CrossRef] [PubMed]
  3. K. Masarie and P. T. Tans, "Extension and integration of atmosphere carbon dioxide data into a globally consistent measurement record," J. Geophys. Res. 100, 11593-11610 (1995).
    [CrossRef]
  4. E. Monnin, A. Indermühle, A. Dällenbach, J. Flückiger, B. Stauffer, T. F. Stocker, D. Raynaud, and J.-M. Barnola, "Atmospheric CO2 concentrations over the last glacial termination," Science 291, 112-114 (2001).
    [CrossRef] [PubMed]
  5. "Monthly average carbon dioxide concentration," Scripps Institute of Oceanography, http://scrippsCO2.ucsd.edu/graphics_gallery/mauna_loa_record/mlo_record.html, May 2007.
  6. P. P. Tans, "How can global warming be traced to CO2?"Sci. Am. 295, 124 (2006).
  7. M. Scheffer, V. Brovkin, and P. M. Cox, "Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change," Geophys. Res. Lett. 33, L10702 (2006).
    [CrossRef]
  8. C. D. Keeling, S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and H. A. Meijer, "Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications, in A History of Atmospheric CO2 and its effects on Plants, Animals, and Ecosystems, J. E. Ehleringer, T. E. Cerling, and M. D. Dearing, eds. (Springer, 2005), pp. 83-113.
  9. J. Alcamo and G. J. J. Kreileman, "Emission scenarios and global climate protection," Global Environ. Change 6, 305-334 (1996).
    [CrossRef]
  10. R. T. Watson, ed., Climate Change 2001. Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2001).
    [PubMed]
  11. J. Hansen, "Defusing the global warming time bomb," Sci. Am. 290, 68 (2004).
    [CrossRef] [PubMed]
  12. R. J. Norby and Y. Luo, "Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world," New Phytol. 162, 281-293 (2006).
    [CrossRef]
  13. P. P. Tans, National Oceanic and Atmospheric Administration, http://www.cmdl.noaa.gov/ccgg/trends/, 17 April 2006.
  14. K. Y. Vinnikov and N. C. Grody, "Global warming trend of mean tropospheric temperature observed by satellites," Science 302, 269-272 (2003).
    [CrossRef] [PubMed]
  15. N. J. Shackleton, "The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity," Science 289, 1897-1902 (2000).
    [CrossRef] [PubMed]
  16. B. Metz, O. Davidson, R. Swart, and J. Pan, eds., Climate Change 2001--Mitigation. The Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2001).
    [PubMed]
  17. H. J. Herzog, "What future for carbon capture and sequestration?" American Chemical Society 35, 148A-153A (2001).
  18. B. Metz, O. DavidsonH. de Coninck, M. Loos, and L. Meyer, eds., Intergovernmental Panel on Climate Change Special Report on Carbon Dioxide Capture and Storage (Cambridge U. Press, 2005).
  19. Lawrence Berkeley National Laboratory, "An Overview of Geologic Sequestration of CO2," presented at ENERGEX'2000: Proceedings of the 8th International Energy Forum, Las Vegas, Nevada, 23-28 July 2000.
  20. T. Xu, "CO2 geological sequestration," LBNL Paper LBNL-56644 JArt (Lawrence Berkeley National Laboratory, 2004).
  21. D. Mingzhe, L. Zhaowen, L. Shuliang, and S. Huang, "CO2 sequestration in depleted oil and gas reservoirs-caprock characterization and storage capacity," Energy Convers. Manage. 47, 1372-1382 (2006).
    [CrossRef]
  22. R. Korbol and A. Kaddour, "Sleipner vest CO2 disposal--injection of removed into the Utsira formation," Energy Convers. Manage. 36, 509-512 (1995).
    [CrossRef]
  23. This project is described at http://www.bp.com/.
  24. S. G. Whittaker, "Geological storage of greenhouse gases: the IEA Weyburn CO2 monitoring and storage project," Reservoir 31, 9 (2004).
  25. S. G. Whittaker, K. Kreis, T. L. Davis, Z. Hajnal, T. Heck, L. Penner, H. Qing, and B. Rostron, "Characterizing the geologic container at the Weyburn field for subsurface CO2 storage associated with enhanced oil recovery," presented at the Diamond Jubilee Convention of the Canadian Society of Petroleum Geologists, Calgary, Alberta, 3-7 June 2002.
  26. S. M. Benson, E. Gasperikova, and G. M. Hoversten, "Monitoring protocols and life-cycle costs for geologic storage of carbon dioxide," in Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies (GHGT-7) (Elsevier, 2005), pp. 1259-1266.
  27. R. P. Hepple, "Implications of surface seepage on the effectiveness of geologic storage of carbon dioxide as a climate change mitigation strategy," LBNL Paper LBNL-51267 (Lawrence Berkeley National Laboratory, 2002).
  28. K. G. Knauss, J. W. Johnson, and C. I. Steefel, "Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2," Chem. Geol. 217, 339-350 (2005).
    [CrossRef]
  29. E. J. Wilson, T. L. Johnson, and D. W. Keith, "Regulating the ultimate sink: managing the risks of geologic CO2 storage," Earth Science Technology , 37, 3476-3483 (2003).
  30. D. D. Baldocchi, "Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present, and future," Global Change Biology 9, 479-492 (2003).
    [CrossRef]
  31. D. P. Billesbach, M. L. Fischer, M. S. Torn, and J. A. Berry, "A portable eddy covariance system for measurement of ecosystem-atmosphere exchange of CO2, water vapor, and energy," J. Atmos. Ocean. Technol. 21, 639-650 (2004).
    [CrossRef]
  32. K. J. Davis, P. S. Bakwin, C. Yi, B. W. Berger, C. Zhaos, R. M. Teclaw, and J. G. Isebrands, "The annual cycles of CO2 and H2O exchange over a northern mixed forest as observed from a very tall tower," Global Change Biology 9, 1278-1293 (2003).
    [CrossRef]
  33. N. T. Edwards and J. S. Riggs, "Automated monitoring of soil respiration: a moving chamber design," Soil Sci. Soc. Am. J. 67, 1266-1271 (2003).
    [CrossRef]
  34. T. J. Griffis, J. M. Baker, S. D. Sargent, B. D. Tanner, and J. Zhang, "Measuring field scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques," Agric. Forest Meteorol. 124, 15-29 (2004).
    [CrossRef]
  35. K. S. Repkasy, S. D. Humphries, and J. L. Carlsten, "Differential absorption measurements of carbon dioxide using a temperature tunable distributed feedback diode laser," Rev. Sci. Instrum. 77, 113107 (2006).
  36. This project is described at http://www.montana.edu/zert/.
  37. L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The Hitran molecular spectroscopic database: edition of 2000 including updates through 2001," J. Quant. Spectrosc. Radiat. Transf. 82, 5-44 (2003).
    [CrossRef]
  38. www.millipore.com catalog number FALP14250.

2006

P. P. Tans, "How can global warming be traced to CO2?"Sci. Am. 295, 124 (2006).

M. Scheffer, V. Brovkin, and P. M. Cox, "Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change," Geophys. Res. Lett. 33, L10702 (2006).
[CrossRef]

R. J. Norby and Y. Luo, "Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world," New Phytol. 162, 281-293 (2006).
[CrossRef]

D. Mingzhe, L. Zhaowen, L. Shuliang, and S. Huang, "CO2 sequestration in depleted oil and gas reservoirs-caprock characterization and storage capacity," Energy Convers. Manage. 47, 1372-1382 (2006).
[CrossRef]

K. S. Repkasy, S. D. Humphries, and J. L. Carlsten, "Differential absorption measurements of carbon dioxide using a temperature tunable distributed feedback diode laser," Rev. Sci. Instrum. 77, 113107 (2006).

2005

K. G. Knauss, J. W. Johnson, and C. I. Steefel, "Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2," Chem. Geol. 217, 339-350 (2005).
[CrossRef]

2004

D. P. Billesbach, M. L. Fischer, M. S. Torn, and J. A. Berry, "A portable eddy covariance system for measurement of ecosystem-atmosphere exchange of CO2, water vapor, and energy," J. Atmos. Ocean. Technol. 21, 639-650 (2004).
[CrossRef]

J. Hansen, "Defusing the global warming time bomb," Sci. Am. 290, 68 (2004).
[CrossRef] [PubMed]

S. G. Whittaker, "Geological storage of greenhouse gases: the IEA Weyburn CO2 monitoring and storage project," Reservoir 31, 9 (2004).

T. J. Griffis, J. M. Baker, S. D. Sargent, B. D. Tanner, and J. Zhang, "Measuring field scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques," Agric. Forest Meteorol. 124, 15-29 (2004).
[CrossRef]

2003

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The Hitran molecular spectroscopic database: edition of 2000 including updates through 2001," J. Quant. Spectrosc. Radiat. Transf. 82, 5-44 (2003).
[CrossRef]

K. J. Davis, P. S. Bakwin, C. Yi, B. W. Berger, C. Zhaos, R. M. Teclaw, and J. G. Isebrands, "The annual cycles of CO2 and H2O exchange over a northern mixed forest as observed from a very tall tower," Global Change Biology 9, 1278-1293 (2003).
[CrossRef]

N. T. Edwards and J. S. Riggs, "Automated monitoring of soil respiration: a moving chamber design," Soil Sci. Soc. Am. J. 67, 1266-1271 (2003).
[CrossRef]

E. J. Wilson, T. L. Johnson, and D. W. Keith, "Regulating the ultimate sink: managing the risks of geologic CO2 storage," Earth Science Technology , 37, 3476-3483 (2003).

D. D. Baldocchi, "Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present, and future," Global Change Biology 9, 479-492 (2003).
[CrossRef]

K. Y. Vinnikov and N. C. Grody, "Global warming trend of mean tropospheric temperature observed by satellites," Science 302, 269-272 (2003).
[CrossRef] [PubMed]

2001

K. M. Cuffey and F. Vimeux, "Covariation of carbon dioxide and temperature from the Vostok ice core after deuterium-excess correction," Nature 412, 523-527 (2001).
[CrossRef] [PubMed]

E. Monnin, A. Indermühle, A. Dällenbach, J. Flückiger, B. Stauffer, T. F. Stocker, D. Raynaud, and J.-M. Barnola, "Atmospheric CO2 concentrations over the last glacial termination," Science 291, 112-114 (2001).
[CrossRef] [PubMed]

H. J. Herzog, "What future for carbon capture and sequestration?" American Chemical Society 35, 148A-153A (2001).

2000

N. J. Shackleton, "The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity," Science 289, 1897-1902 (2000).
[CrossRef] [PubMed]

1996

J. Alcamo and G. J. J. Kreileman, "Emission scenarios and global climate protection," Global Environ. Change 6, 305-334 (1996).
[CrossRef]

1995

K. Masarie and P. T. Tans, "Extension and integration of atmosphere carbon dioxide data into a globally consistent measurement record," J. Geophys. Res. 100, 11593-11610 (1995).
[CrossRef]

R. Korbol and A. Kaddour, "Sleipner vest CO2 disposal--injection of removed into the Utsira formation," Energy Convers. Manage. 36, 509-512 (1995).
[CrossRef]

1987

J. M. Barnola, D. Raynaud, Y. S. Korotkevich, and C. Lorius, "Vostok ice core provides 160,000-year record of atmospheric CO2," Nature 329, 408-414 (1987).
[CrossRef]

Agric. Forest Meteorol.

T. J. Griffis, J. M. Baker, S. D. Sargent, B. D. Tanner, and J. Zhang, "Measuring field scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques," Agric. Forest Meteorol. 124, 15-29 (2004).
[CrossRef]

American Chemical Society

H. J. Herzog, "What future for carbon capture and sequestration?" American Chemical Society 35, 148A-153A (2001).

Chem. Geol.

K. G. Knauss, J. W. Johnson, and C. I. Steefel, "Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2," Chem. Geol. 217, 339-350 (2005).
[CrossRef]

Earth Science Technology

E. J. Wilson, T. L. Johnson, and D. W. Keith, "Regulating the ultimate sink: managing the risks of geologic CO2 storage," Earth Science Technology , 37, 3476-3483 (2003).

Energy Convers. Manage.

D. Mingzhe, L. Zhaowen, L. Shuliang, and S. Huang, "CO2 sequestration in depleted oil and gas reservoirs-caprock characterization and storage capacity," Energy Convers. Manage. 47, 1372-1382 (2006).
[CrossRef]

R. Korbol and A. Kaddour, "Sleipner vest CO2 disposal--injection of removed into the Utsira formation," Energy Convers. Manage. 36, 509-512 (1995).
[CrossRef]

Geophys. Res. Lett.

M. Scheffer, V. Brovkin, and P. M. Cox, "Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change," Geophys. Res. Lett. 33, L10702 (2006).
[CrossRef]

Global Change Biology

D. D. Baldocchi, "Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present, and future," Global Change Biology 9, 479-492 (2003).
[CrossRef]

K. J. Davis, P. S. Bakwin, C. Yi, B. W. Berger, C. Zhaos, R. M. Teclaw, and J. G. Isebrands, "The annual cycles of CO2 and H2O exchange over a northern mixed forest as observed from a very tall tower," Global Change Biology 9, 1278-1293 (2003).
[CrossRef]

Global Environ. Change

J. Alcamo and G. J. J. Kreileman, "Emission scenarios and global climate protection," Global Environ. Change 6, 305-334 (1996).
[CrossRef]

J. Atmos. Ocean. Technol.

D. P. Billesbach, M. L. Fischer, M. S. Torn, and J. A. Berry, "A portable eddy covariance system for measurement of ecosystem-atmosphere exchange of CO2, water vapor, and energy," J. Atmos. Ocean. Technol. 21, 639-650 (2004).
[CrossRef]

J. Geophys. Res.

K. Masarie and P. T. Tans, "Extension and integration of atmosphere carbon dioxide data into a globally consistent measurement record," J. Geophys. Res. 100, 11593-11610 (1995).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The Hitran molecular spectroscopic database: edition of 2000 including updates through 2001," J. Quant. Spectrosc. Radiat. Transf. 82, 5-44 (2003).
[CrossRef]

Nature

J. M. Barnola, D. Raynaud, Y. S. Korotkevich, and C. Lorius, "Vostok ice core provides 160,000-year record of atmospheric CO2," Nature 329, 408-414 (1987).
[CrossRef]

K. M. Cuffey and F. Vimeux, "Covariation of carbon dioxide and temperature from the Vostok ice core after deuterium-excess correction," Nature 412, 523-527 (2001).
[CrossRef] [PubMed]

New Phytol.

R. J. Norby and Y. Luo, "Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world," New Phytol. 162, 281-293 (2006).
[CrossRef]

Reservoir

S. G. Whittaker, "Geological storage of greenhouse gases: the IEA Weyburn CO2 monitoring and storage project," Reservoir 31, 9 (2004).

Rev. Sci. Instrum.

K. S. Repkasy, S. D. Humphries, and J. L. Carlsten, "Differential absorption measurements of carbon dioxide using a temperature tunable distributed feedback diode laser," Rev. Sci. Instrum. 77, 113107 (2006).

Sci. Am.

P. P. Tans, "How can global warming be traced to CO2?"Sci. Am. 295, 124 (2006).

J. Hansen, "Defusing the global warming time bomb," Sci. Am. 290, 68 (2004).
[CrossRef] [PubMed]

Science

E. Monnin, A. Indermühle, A. Dällenbach, J. Flückiger, B. Stauffer, T. F. Stocker, D. Raynaud, and J.-M. Barnola, "Atmospheric CO2 concentrations over the last glacial termination," Science 291, 112-114 (2001).
[CrossRef] [PubMed]

K. Y. Vinnikov and N. C. Grody, "Global warming trend of mean tropospheric temperature observed by satellites," Science 302, 269-272 (2003).
[CrossRef] [PubMed]

N. J. Shackleton, "The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity," Science 289, 1897-1902 (2000).
[CrossRef] [PubMed]

Soil Sci. Soc. Am. J.

N. T. Edwards and J. S. Riggs, "Automated monitoring of soil respiration: a moving chamber design," Soil Sci. Soc. Am. J. 67, 1266-1271 (2003).
[CrossRef]

Other

This project is described at http://www.montana.edu/zert/.

B. Metz, O. Davidson, R. Swart, and J. Pan, eds., Climate Change 2001--Mitigation. The Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2001).
[PubMed]

This project is described at http://www.bp.com/.

S. G. Whittaker, K. Kreis, T. L. Davis, Z. Hajnal, T. Heck, L. Penner, H. Qing, and B. Rostron, "Characterizing the geologic container at the Weyburn field for subsurface CO2 storage associated with enhanced oil recovery," presented at the Diamond Jubilee Convention of the Canadian Society of Petroleum Geologists, Calgary, Alberta, 3-7 June 2002.

S. M. Benson, E. Gasperikova, and G. M. Hoversten, "Monitoring protocols and life-cycle costs for geologic storage of carbon dioxide," in Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies (GHGT-7) (Elsevier, 2005), pp. 1259-1266.

R. P. Hepple, "Implications of surface seepage on the effectiveness of geologic storage of carbon dioxide as a climate change mitigation strategy," LBNL Paper LBNL-51267 (Lawrence Berkeley National Laboratory, 2002).

"Monthly average carbon dioxide concentration," Scripps Institute of Oceanography, http://scrippsCO2.ucsd.edu/graphics_gallery/mauna_loa_record/mlo_record.html, May 2007.

R. T. Watson, ed., Climate Change 2001. Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2001).
[PubMed]

C. D. Keeling, S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and H. A. Meijer, "Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications, in A History of Atmospheric CO2 and its effects on Plants, Animals, and Ecosystems, J. E. Ehleringer, T. E. Cerling, and M. D. Dearing, eds. (Springer, 2005), pp. 83-113.

P. P. Tans, National Oceanic and Atmospheric Administration, http://www.cmdl.noaa.gov/ccgg/trends/, 17 April 2006.

B. Metz, O. DavidsonH. de Coninck, M. Loos, and L. Meyer, eds., Intergovernmental Panel on Climate Change Special Report on Carbon Dioxide Capture and Storage (Cambridge U. Press, 2005).

Lawrence Berkeley National Laboratory, "An Overview of Geologic Sequestration of CO2," presented at ENERGEX'2000: Proceedings of the 8th International Energy Forum, Las Vegas, Nevada, 23-28 July 2000.

T. Xu, "CO2 geological sequestration," LBNL Paper LBNL-56644 JArt (Lawrence Berkeley National Laboratory, 2004).

www.millipore.com catalog number FALP14250.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) Schematic of the aboveground differential absorption instrument used for measuring atmospheric CO 2 concentration.

Fig. 2
Fig. 2

Plot of the normalized transmission as a function of wavelength measured in the laboratory using the aboveground differential absorption instrument. The dashed curve represents the measured values while the solid curve represents the expected values using the Hitran database [31].

Fig. 3
Fig. 3

(Color online) Schematic of the underground differential absorption instrument for measuring CO 2 soil gas concentrations.

Fig. 4
Fig. 4

(Color online) Plot of the normalized differential transmission as a function of wavelength using the underground differential absorption instrument. The dashed curve represents the measured spectrum near peak concentration measurements, over 100,000 ppm, while the solid curve represents the expected spectrum calculated using the Hitran database [31].

Fig. 5
Fig. 5

Scan of the normalized transmission as a function of DFB diode laser operating temperature taken at the field site using the aboveground differential absorption instrument. The noisier signal shown in this figure compared to the scan shown in Fig. 2 results from atmospheric transmission effects including temperature gradients and atmospheric turbulence that cause laser beam steering.

Fig. 6
Fig. 6

(Color online) Plot of the average daily atmospheric CO 2 concentration measured using the aboveground differential absorption instrument from 1–13 August 2007. The squares (circles) represent data taken over the well (background). The elevated atmospheric CO 2 concentration due to the injected CO 2 is evident in this figure.

Fig. 7
Fig. 7

Plot of the CO 2 soil gas concentration as a function of time taken with the underground differential absorption instrument. Data collection began at 6:30 a.m. 3 August 2007 as is referenced as 0 h. The CO 2 injection began at 11:00 a.m. 3 August 2007 and was stopped at 5:00 p.m. 10 August 2007. The time and date associate with features of interest are labeled in this figure.

Tables (1)

Tables Icon

Table 1 Listing of Some Stronger Absorption Features of CO2 and Water Vapor in the 2.001 to 2.006 μm Spectral Region Found Using the Hitran Database a , b

Equations (128)

Equations on this page are rendered with MathJax. Learn more.

( CO 2 )
2.0027 2.0042 μ m
CO 2
CO 2
2.0032 2.0055 μ m
CO 2
CO 2
CO 2
CO 2 / day
CO 2
CO 2
CO 2
448   ppm
CO 2
CO 2
CO 2
( CO 2 )
280   ppm
384   ppm
CO 2
CO 2
23.5 GtCO 2 / yr
26.4 GtCO 2 / yr
CO 2
CO 2
CO 2
CO 2
CO 2
1680 Gt / CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
2 μ m
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
0.3   tons   CO 2 / day
CO 2
CO 2
CO 2
CO 2
CO 2
0.3   tons   CO 2 / day
CO 2
CO 2
34.5   kPa
CO 2
500   MW
CO 2
CO 2
CO 2
C = P a P T = ln [ T ] S g [ ν ν 0 ] N L P T L ( 296 T a ) ,
P a
P T
g ( ν ν 0 )
N L
2.479 × 10 19
c m 3
T a
1 μ m
CO 2
CO 2
CO 2
15   cm
CO 2
CO 2
120   m
75   cm
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
5   h
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2 / day
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2
CO 2

Metrics