Abstract

We investigate the possibility of using the water-backscattered radiation from a bottom sounding airborne imaging light detection and ranging (lidar) system to determine the surface slope at the point where the laser beam intersects the surface. We show that the refraction angle of the beam can be determined using receivers whose sensitivities vary linearly over their field of view. Equations are derived to estimate the statistical mean and variance values of this refracted angle. We demonstrate that the proposed algorithm improves lidar imaging. Numerical examples with reference to typical marine conditions are given.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Lidar In-space Technology Experiment measurements of sea surface directional reflectance and the link to surface wind speed

Robert T. Menzies, David M. Tratt, and William H. Hunt
Appl. Opt. 37(24) 5550-5559 (1998)

Effects of ocean waves on airborne lidar imaging

John W. McLean and Jonathan D. Freeman
Appl. Opt. 35(18) 3261-3269 (1996)

The influence of coherent waves on the remotely sensed reflectance

J. Ronald, V. Zaneveld, Emmanuel Boss, and Paul A. Hwang
Opt. Express 9(6) 260-266 (2001)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription