Abstract

The laser-jamming effectiveness of combined fiber lasers for airborne defense systems is analyzed in detail. Our preliminary experimental results are proof of the concept of getting a high-power laser through a beam combination technique. Based on combined fiber lasers, the jamming effectiveness of four-quadrant guidance and imaging guidance systems are evaluated. The simulation results have proved that for a four-quadrant guidance system, the tracking system takes only two seconds to complete tracking, and the new tracking target is the jamming laser; for the imaging guidance system, increasing the power of the jamming laser or the distance between the target and the jamming laser are both efficient ways to achieve a successful laser jamming.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. El-Sherif and T. A. King, “Analysis and optimization of Q-switched operation of a Tm3+-doped silica fiber laser operating at 2 μm,” IEEE J. Quantum Electron. 39, 759-761(2003).
    [CrossRef]
  2. Y. Jeong and J. K. Sahu, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 298-299 (2004).
    [CrossRef]
  3. X. Jie and Z. Shanghong, “Effects of optical parameters on the efficiency of incoherent fiber laser beam combination,” J. Optoelectron. Eng. 34, 28-32 (2007).
  4. E. J. Bochove, “Theory of spectral beam combining of fiber lasers,” IEEE J. Quantum Electron. 38, 432 (2002).
    [CrossRef]
  5. E. J. Bochove, “Spectral beam combining model for fiber lasers,” Proc. SPIE 4270, 95-100 (2001).
    [CrossRef]
  6. P. Salet, G. Lucas-Leclin, and G. Roger, “Spectral beam combining of a single-mode 980 nm laser array for pumping of erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 17, 738-740 (2005).
    [CrossRef]
  7. A. Sevian, O. Andrusyak, and I. Ciapurin, “Spectral beam combining with volume Bragg gratings: cross-talk analysis and optimization schemes,” Proc. SPIE 6216, 62160V (2006).
    [CrossRef]
  8. I. V. Ciapurin and L. B. Glebov, “Incoherent combining of 100 W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209-212 (2003).
    [CrossRef]
  9. Y.-B. Huang and Y.-J. Wang, “Numerical analysis of the scaling laws about focused beam spreading induced by the atmosphere,” Acta Phys. Sin. 55, 6715-6719 (2006).
  10. F. G. Gebhardt, “Atmospheric effects modeling for high energy laser systems,” Proc. SPIE 2502, 102-107 (1995).
  11. Q.-R. Cheng and G.-Y. Wang, “Effectiveness evaluation and theoretical analysis of laser jamming induced by high power YAG laser,” Laser J. 28, 24-25 (2007).
  12. X.-Z. Mu, “Modeling and emulating for a laser guidance seeker's angle tracking loop,” Aero Weaponry 28, 35-38(2005).
  13. Y.-X. Niu, Y.-F. Wang , and et al., “Experimental research on the damage of four-quadrant photodetector,” J. Optoelectron. Laser 10, 215-217 (1999).
  14. W. Lei and Q.-L. Xia, “Effects of detector and rate gyro noise and scale factor errors on system's strap down detector and integral form of proportional navigation law,” Acta Electron. Sin. 34, 1654-1655 (2006).
  15. G. Wei, “Evaluation method for jamming effectiveness on electro-optical imaging systems,” J. Optoelectron. Eng. 33, 5-8 (2006).
  16. D.-P. Zhao and J.-M. Shi, “Effectiveness evaluation method based on the image characteristic for imaging guidance countermeasures,” Laser Infrared 35, 599-601 (2005).

2007 (2)

X. Jie and Z. Shanghong, “Effects of optical parameters on the efficiency of incoherent fiber laser beam combination,” J. Optoelectron. Eng. 34, 28-32 (2007).

Q.-R. Cheng and G.-Y. Wang, “Effectiveness evaluation and theoretical analysis of laser jamming induced by high power YAG laser,” Laser J. 28, 24-25 (2007).

2006 (4)

W. Lei and Q.-L. Xia, “Effects of detector and rate gyro noise and scale factor errors on system's strap down detector and integral form of proportional navigation law,” Acta Electron. Sin. 34, 1654-1655 (2006).

G. Wei, “Evaluation method for jamming effectiveness on electro-optical imaging systems,” J. Optoelectron. Eng. 33, 5-8 (2006).

A. Sevian, O. Andrusyak, and I. Ciapurin, “Spectral beam combining with volume Bragg gratings: cross-talk analysis and optimization schemes,” Proc. SPIE 6216, 62160V (2006).
[CrossRef]

Y.-B. Huang and Y.-J. Wang, “Numerical analysis of the scaling laws about focused beam spreading induced by the atmosphere,” Acta Phys. Sin. 55, 6715-6719 (2006).

2005 (3)

D.-P. Zhao and J.-M. Shi, “Effectiveness evaluation method based on the image characteristic for imaging guidance countermeasures,” Laser Infrared 35, 599-601 (2005).

X.-Z. Mu, “Modeling and emulating for a laser guidance seeker's angle tracking loop,” Aero Weaponry 28, 35-38(2005).

P. Salet, G. Lucas-Leclin, and G. Roger, “Spectral beam combining of a single-mode 980 nm laser array for pumping of erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 17, 738-740 (2005).
[CrossRef]

2004 (1)

Y. Jeong and J. K. Sahu, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 298-299 (2004).
[CrossRef]

2003 (2)

A. F. El-Sherif and T. A. King, “Analysis and optimization of Q-switched operation of a Tm3+-doped silica fiber laser operating at 2 μm,” IEEE J. Quantum Electron. 39, 759-761(2003).
[CrossRef]

I. V. Ciapurin and L. B. Glebov, “Incoherent combining of 100 W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209-212 (2003).
[CrossRef]

2002 (1)

E. J. Bochove, “Theory of spectral beam combining of fiber lasers,” IEEE J. Quantum Electron. 38, 432 (2002).
[CrossRef]

2001 (1)

E. J. Bochove, “Spectral beam combining model for fiber lasers,” Proc. SPIE 4270, 95-100 (2001).
[CrossRef]

1999 (1)

Y.-X. Niu, Y.-F. Wang , and et al., “Experimental research on the damage of four-quadrant photodetector,” J. Optoelectron. Laser 10, 215-217 (1999).

1995 (1)

F. G. Gebhardt, “Atmospheric effects modeling for high energy laser systems,” Proc. SPIE 2502, 102-107 (1995).

Andrusyak, O.

A. Sevian, O. Andrusyak, and I. Ciapurin, “Spectral beam combining with volume Bragg gratings: cross-talk analysis and optimization schemes,” Proc. SPIE 6216, 62160V (2006).
[CrossRef]

Bochove, E. J.

E. J. Bochove, “Theory of spectral beam combining of fiber lasers,” IEEE J. Quantum Electron. 38, 432 (2002).
[CrossRef]

E. J. Bochove, “Spectral beam combining model for fiber lasers,” Proc. SPIE 4270, 95-100 (2001).
[CrossRef]

Cheng, Q.-R.

Q.-R. Cheng and G.-Y. Wang, “Effectiveness evaluation and theoretical analysis of laser jamming induced by high power YAG laser,” Laser J. 28, 24-25 (2007).

Ciapurin, I.

A. Sevian, O. Andrusyak, and I. Ciapurin, “Spectral beam combining with volume Bragg gratings: cross-talk analysis and optimization schemes,” Proc. SPIE 6216, 62160V (2006).
[CrossRef]

Ciapurin, I. V.

I. V. Ciapurin and L. B. Glebov, “Incoherent combining of 100 W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209-212 (2003).
[CrossRef]

El-Sherif, A. F.

A. F. El-Sherif and T. A. King, “Analysis and optimization of Q-switched operation of a Tm3+-doped silica fiber laser operating at 2 μm,” IEEE J. Quantum Electron. 39, 759-761(2003).
[CrossRef]

Gebhardt, F. G.

F. G. Gebhardt, “Atmospheric effects modeling for high energy laser systems,” Proc. SPIE 2502, 102-107 (1995).

Glebov, L. B.

I. V. Ciapurin and L. B. Glebov, “Incoherent combining of 100 W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209-212 (2003).
[CrossRef]

Huang, Y.-B.

Y.-B. Huang and Y.-J. Wang, “Numerical analysis of the scaling laws about focused beam spreading induced by the atmosphere,” Acta Phys. Sin. 55, 6715-6719 (2006).

Jeong, Y.

Y. Jeong and J. K. Sahu, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 298-299 (2004).
[CrossRef]

Jie, X.

X. Jie and Z. Shanghong, “Effects of optical parameters on the efficiency of incoherent fiber laser beam combination,” J. Optoelectron. Eng. 34, 28-32 (2007).

King, T. A.

A. F. El-Sherif and T. A. King, “Analysis and optimization of Q-switched operation of a Tm3+-doped silica fiber laser operating at 2 μm,” IEEE J. Quantum Electron. 39, 759-761(2003).
[CrossRef]

Lei, W.

W. Lei and Q.-L. Xia, “Effects of detector and rate gyro noise and scale factor errors on system's strap down detector and integral form of proportional navigation law,” Acta Electron. Sin. 34, 1654-1655 (2006).

Lucas-Leclin, G.

P. Salet, G. Lucas-Leclin, and G. Roger, “Spectral beam combining of a single-mode 980 nm laser array for pumping of erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 17, 738-740 (2005).
[CrossRef]

Mu, X.-Z.

X.-Z. Mu, “Modeling and emulating for a laser guidance seeker's angle tracking loop,” Aero Weaponry 28, 35-38(2005).

Niu, Y.-X.

Y.-X. Niu, Y.-F. Wang , and et al., “Experimental research on the damage of four-quadrant photodetector,” J. Optoelectron. Laser 10, 215-217 (1999).

Roger, G.

P. Salet, G. Lucas-Leclin, and G. Roger, “Spectral beam combining of a single-mode 980 nm laser array for pumping of erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 17, 738-740 (2005).
[CrossRef]

Sahu, J. K.

Y. Jeong and J. K. Sahu, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 298-299 (2004).
[CrossRef]

Salet, P.

P. Salet, G. Lucas-Leclin, and G. Roger, “Spectral beam combining of a single-mode 980 nm laser array for pumping of erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 17, 738-740 (2005).
[CrossRef]

Sevian, A.

A. Sevian, O. Andrusyak, and I. Ciapurin, “Spectral beam combining with volume Bragg gratings: cross-talk analysis and optimization schemes,” Proc. SPIE 6216, 62160V (2006).
[CrossRef]

Shanghong, Z.

X. Jie and Z. Shanghong, “Effects of optical parameters on the efficiency of incoherent fiber laser beam combination,” J. Optoelectron. Eng. 34, 28-32 (2007).

Shi, J.-M.

D.-P. Zhao and J.-M. Shi, “Effectiveness evaluation method based on the image characteristic for imaging guidance countermeasures,” Laser Infrared 35, 599-601 (2005).

Wang, G.-Y.

Q.-R. Cheng and G.-Y. Wang, “Effectiveness evaluation and theoretical analysis of laser jamming induced by high power YAG laser,” Laser J. 28, 24-25 (2007).

Wang, Y.-F.

Y.-X. Niu, Y.-F. Wang , and et al., “Experimental research on the damage of four-quadrant photodetector,” J. Optoelectron. Laser 10, 215-217 (1999).

Wang, Y.-J.

Y.-B. Huang and Y.-J. Wang, “Numerical analysis of the scaling laws about focused beam spreading induced by the atmosphere,” Acta Phys. Sin. 55, 6715-6719 (2006).

Wei, G.

G. Wei, “Evaluation method for jamming effectiveness on electro-optical imaging systems,” J. Optoelectron. Eng. 33, 5-8 (2006).

Xia, Q.-L.

W. Lei and Q.-L. Xia, “Effects of detector and rate gyro noise and scale factor errors on system's strap down detector and integral form of proportional navigation law,” Acta Electron. Sin. 34, 1654-1655 (2006).

Zhao, D.-P.

D.-P. Zhao and J.-M. Shi, “Effectiveness evaluation method based on the image characteristic for imaging guidance countermeasures,” Laser Infrared 35, 599-601 (2005).

Acta Electron. Sin. (1)

W. Lei and Q.-L. Xia, “Effects of detector and rate gyro noise and scale factor errors on system's strap down detector and integral form of proportional navigation law,” Acta Electron. Sin. 34, 1654-1655 (2006).

Acta Phys. Sin. (1)

Y.-B. Huang and Y.-J. Wang, “Numerical analysis of the scaling laws about focused beam spreading induced by the atmosphere,” Acta Phys. Sin. 55, 6715-6719 (2006).

Aero Weaponry (1)

X.-Z. Mu, “Modeling and emulating for a laser guidance seeker's angle tracking loop,” Aero Weaponry 28, 35-38(2005).

Electron. Lett. (1)

Y. Jeong and J. K. Sahu, “Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,” Electron. Lett. 40, 298-299 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. J. Bochove, “Theory of spectral beam combining of fiber lasers,” IEEE J. Quantum Electron. 38, 432 (2002).
[CrossRef]

A. F. El-Sherif and T. A. King, “Analysis and optimization of Q-switched operation of a Tm3+-doped silica fiber laser operating at 2 μm,” IEEE J. Quantum Electron. 39, 759-761(2003).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

P. Salet, G. Lucas-Leclin, and G. Roger, “Spectral beam combining of a single-mode 980 nm laser array for pumping of erbium-doped fiber amplifiers,” IEEE Photonics Technol. Lett. 17, 738-740 (2005).
[CrossRef]

J. Optoelectron. Eng. (2)

X. Jie and Z. Shanghong, “Effects of optical parameters on the efficiency of incoherent fiber laser beam combination,” J. Optoelectron. Eng. 34, 28-32 (2007).

G. Wei, “Evaluation method for jamming effectiveness on electro-optical imaging systems,” J. Optoelectron. Eng. 33, 5-8 (2006).

J. Optoelectron. Laser (1)

Y.-X. Niu, Y.-F. Wang , and et al., “Experimental research on the damage of four-quadrant photodetector,” J. Optoelectron. Laser 10, 215-217 (1999).

Laser Infrared (1)

D.-P. Zhao and J.-M. Shi, “Effectiveness evaluation method based on the image characteristic for imaging guidance countermeasures,” Laser Infrared 35, 599-601 (2005).

Laser J. (1)

Q.-R. Cheng and G.-Y. Wang, “Effectiveness evaluation and theoretical analysis of laser jamming induced by high power YAG laser,” Laser J. 28, 24-25 (2007).

Proc. SPIE (4)

E. J. Bochove, “Spectral beam combining model for fiber lasers,” Proc. SPIE 4270, 95-100 (2001).
[CrossRef]

A. Sevian, O. Andrusyak, and I. Ciapurin, “Spectral beam combining with volume Bragg gratings: cross-talk analysis and optimization schemes,” Proc. SPIE 6216, 62160V (2006).
[CrossRef]

I. V. Ciapurin and L. B. Glebov, “Incoherent combining of 100 W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209-212 (2003).
[CrossRef]

F. G. Gebhardt, “Atmospheric effects modeling for high energy laser systems,” Proc. SPIE 2502, 102-107 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of incoherent fiber laser beam combination.

Fig. 2
Fig. 2

Experimental scheme of two-beam combination.

Fig. 3
Fig. 3

Experimental configuration of two-beam combination.

Fig. 4
Fig. 4

Relation between coupling power and pump current.

Fig. 5
Fig. 5

Tracking loop of proportional guidance system.

Fig. 6
Fig. 6

Closed-loop function of tracking system.

Fig. 7
Fig. 7

Normalized gesture-adjusting coefficient.

Fig. 8
Fig. 8

Schematic diagram of the simulation system.

Fig. 9
Fig. 9

Tracking result (before laser jamming).

Fig. 10
Fig. 10

Tracking result (jamming-laser center (28, 40), intensity 0.5).

Fig. 11
Fig. 11

Tracking result (jamming-laser center (54, 65), intensity 0.5).

Fig. 12
Fig. 12

Tracking result (jamming-laser center (54, 65), intensity 0.3).

Fig. 13
Fig. 13

Tracking result (jamming-laser center (54, 65), intensity 0.8).

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

sin β sin α = m λ d , | m | = 1 , 2 , 3 ,
E 0 ( x , y ) = E 0 e [ x 2 + ( y Y ) 2 ] / w 0 2 + i k ( x θ x + y θ y ) ,
| J ( λ ) | 2 = e 4 ( θ x 2 + θ Y 2 ) / σ D 2 4 Y 2 / w 0 2 e 4 ( λ λ 0 ) 2 / Δ λ B 2 ( 1 + ω x 2 ) ( 1 + ω y 2 ) .
Δ λ B = w 0 d cos α 0 m f 1 + ω x 2 ,
ω i = ε / 2 Z R , i = x , y ,
P 1 · τ = s E ( x , y ) d x d y .
M ( x , y ) = ρ ( x , y ) · E ( x , y ) .
E 1 = s M ( x , y ) · cos α ( x , y ) · τ d x d y π ( R 1 θ 1 ) 2
= s ρ ( x , y ) · E ( x , y ) · cos α ( x , y ) · τ d x d y π ( R 1 θ 1 ) 2 ,
E 1 = ρ · τ · cos α π ( R 1 θ 1 ) 2 s E ( x , y ) d x d y = P 1 · τ 2 · ρ · cos α π ( R 1 θ 1 ) 2 .
E 1 = P 1 · τ 2 · ρ · cos α π ( R 1 θ 1 ) 2 [ 1 1 + ( σ J / σ D ) 2 + ( D / r 0 ) 2 ] I REL ( N ) ,
τ = exp ( 3.91 · L V · ( λ 0.55 ) q ) .
E 2 = P 2 τ π ( R 2 θ 2 ) 2 .
E 2 = P 2 τ π ( R 2 θ 2 ) 2 [ 1 1 + ( σ J / σ D ) 2 + ( D / r 0 ) 2 ] I REL ( N ) ,
E 2 E 1 = P 2 τ / π ( R 2 θ 2 ) 2 P 1 τ 2 ρ cos α / π R 1 2 = P 2 ( R 1 θ 1 ) 2 P 1 R 2 2 θ 2 2 τ ρ cos α .
E 1 E 2 = k = 2.34 × 10 2 .
x ' = k ' 1 + k ' x 01 + 1 1 + k ' x 02 ,
y ' = k ' 1 + k ' y 01 + 1 1 + k ' y 02 ,
M λ = c 1 λ 5 1 e c 2 / λ T 1 ,
M 0 λ = 0 λ c 1 λ 5 1 e c 2 / λ T 1 d λ ,
I = A s ε cos θ s π λ 2 λ 1 c 1 λ 5 1 e c 2 / λ T 1 d λ ,
R ( x , y ) = u = 0 U v = 0 V M ( u , v ) S ( x + u , y + v ) u = 0 U v = 0 V M 2 ( u , v ) u = 0 U v = 0 V S 2 ( x + u , y + v ) .

Metrics