Abstract

Active millimeter-wave imaging systems for concealed object detection offer the possibility of much higher image contrast than passive systems, especially in indoor applications. By studying active millimeter-wave images of different test objects derived in the W band, we show that multispectral illumination is critical to the detectability of targets. We also propose to use image change detection techniques, including image differencing, normalized difference vegetation index, and principle component analysis to process the multispectral millimeter-wave images. The results demonstrate that multispectral illumination can significantly reveal the object features hidden by image artifacts and improve the appearance of the objects.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Kemp, “Millimeter wave and terahertz technology for the detection of concealed threats--A review,” Proc. SPIE 6402, 6402D (2006).
  2. R. Appleby and B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55, 2944-2955 (2007).
    [CrossRef]
  3. R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.
  4. C. A. Martin and V. G. Kolinko, “Concealed weapons detection with an improved passive millimeter-wave imager,” Proc. SPIE 5410, 252-259 (2004).
    [CrossRef]
  5. A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. Attia, and I. Blankson, “Design and development of a high performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng. 44, 093202 (2005).
    [CrossRef]
  6. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Cylindrical millimeter-wave imaging technique and applications,” Proc. SPIE 6548, 654809 (2007).
    [CrossRef]
  7. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Speckle in active millimeter-wave and terahertz imaging and spectroscopy,” Proc. SPIE 6211, 62110A (2006).
    [CrossRef]
  8. P. T. Hue, F. Gumbmann, W. Jochen, and L. Schmidt, “A fast scanning W-band system of advanced millimeter-wave shot range imaging applications, ” Proceedings of IEEE The 3rd European Radar Conference (IEEE, 2006), pp. 146-149.
  9. E. N. Grossman and A. J. Miller, “Active millimeter-wave imaging for concealed weapons detection,” Proc. SPIE 5077, 62-70 (2003).
    [CrossRef]
  10. P. F. Goldsmith, C.-T. Hsieh, and G. R. Huguenin, “Focal plane imaging systems for millimeter wavelength,” IEEE Trans. Microwave Theory Tech. 41, 1664-1675 (1993).
    [CrossRef]
  11. E. L. Jacobs, S. Moyer, C. C. Franck, F. C. Delucia, C. Casto, D. T. Petkie, S. R. Murrill, and C. E. Halford, “Concealed weapon identification using terahertz imaging sensors,” Proc. SPIE 6212, 62120J (2006).
    [CrossRef]
  12. I. Jäger, L. Zhang, J. Stiens, G. Koers, H. Sahli, and R. Vounckx, “W-band speckle contrast images for inspection of concealed object,” Proc. SPIE 6616, 66160Y (2007).
  13. N. E. Alexander, C. C. Andres, and R. Gonzalo, “Multispectral mm-wave imaging: materials and images,” Proc. SPIE 6948, 694803 (2008).
    [CrossRef]
  14. Committee on Assessment of Security Technologies for Transportation of National Research Council, Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons (The National Academies, 2007).
  15. A. Elhawil, G. Koers, L. Zhang, and J. Stiens, “Reliable method for material characterization using a quasi-optical free-space measurement in the W band,” IET Sci. Meas. Technol. (to be published).
  16. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2005).
  17. G. Koers, “Noise suppression in active millimeter wave imaging systems,” Ph.D dissertation (Vrije Universiteit Brussel, 2006).
  18. G. Koers, I. Ocket, Q. Feng, V. Tavakol, I. Jäger, B. Nauwelaers, and J. Stiens, “Study of active millimeter-wave image speckle reduction by Hadamard phase pattern illumination,” J. Opt. Soc. Am. A 25, 312-317 (2008).
    [CrossRef]
  19. A. Elhawil, G. Koers, L. Zhang, J. Stiens, and R. Vounckx, “Comparison between two optimization algorithms to compute the complex permittivity of dielectric multilayer structures using a free space quasi-optical method in W band,” IET Sci. Meas. Technol. (to be published).
  20. D. Lu, P. Mausel, E. Brondizio, and E. Moran, “Change detection techniques,” Int. J. Remote Sens. 25, 2365-2407 (2004).
    [CrossRef]
  21. A. Singh, “Digital change detection techniques using remotely sensed data,” Int. J. Remote Sens. 10, 989-1003 (1989).
    [CrossRef]
  22. C. J. Tucker, “Red and photographic infrared linear combination for monitoring vegetation,” Remote Sens. Environ. 8, 127-150 (1979).
    [CrossRef]
  23. W. K. Michener and P. F. Houhoulis, “Detection of vegetation changes associated with extensive flooding in a forested ecosystem,” Photogram. Eng. Remote Sens. 63, 1363-1374(1997).
  24. P. Coppin, I. Jonckheere, K. Nackaerts, and B. Muys, “Digital change detection in ecosystem monitoring: a review,” Int. J. Remote Sens. 10, 1565-1596 (2004).
  25. S. R. Murrill, E. L. Jacobs, S. K. Moyer, C. E. Halford, S. T. Griffin, F. C. De Lucia, D. T. Petkie, and C. C. Franck, “Terahertz imaging system performance model for concealed weapon identification,” Proc. SPIE 5989, 59891E(2005).
    [CrossRef]

2008 (2)

2007 (3)

I. Jäger, L. Zhang, J. Stiens, G. Koers, H. Sahli, and R. Vounckx, “W-band speckle contrast images for inspection of concealed object,” Proc. SPIE 6616, 66160Y (2007).

R. Appleby and B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55, 2944-2955 (2007).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Cylindrical millimeter-wave imaging technique and applications,” Proc. SPIE 6548, 654809 (2007).
[CrossRef]

2006 (3)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Speckle in active millimeter-wave and terahertz imaging and spectroscopy,” Proc. SPIE 6211, 62110A (2006).
[CrossRef]

M. C. Kemp, “Millimeter wave and terahertz technology for the detection of concealed threats--A review,” Proc. SPIE 6402, 6402D (2006).

E. L. Jacobs, S. Moyer, C. C. Franck, F. C. Delucia, C. Casto, D. T. Petkie, S. R. Murrill, and C. E. Halford, “Concealed weapon identification using terahertz imaging sensors,” Proc. SPIE 6212, 62120J (2006).
[CrossRef]

2005 (2)

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. Attia, and I. Blankson, “Design and development of a high performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng. 44, 093202 (2005).
[CrossRef]

S. R. Murrill, E. L. Jacobs, S. K. Moyer, C. E. Halford, S. T. Griffin, F. C. De Lucia, D. T. Petkie, and C. C. Franck, “Terahertz imaging system performance model for concealed weapon identification,” Proc. SPIE 5989, 59891E(2005).
[CrossRef]

2004 (3)

C. A. Martin and V. G. Kolinko, “Concealed weapons detection with an improved passive millimeter-wave imager,” Proc. SPIE 5410, 252-259 (2004).
[CrossRef]

P. Coppin, I. Jonckheere, K. Nackaerts, and B. Muys, “Digital change detection in ecosystem monitoring: a review,” Int. J. Remote Sens. 10, 1565-1596 (2004).

D. Lu, P. Mausel, E. Brondizio, and E. Moran, “Change detection techniques,” Int. J. Remote Sens. 25, 2365-2407 (2004).
[CrossRef]

2003 (1)

E. N. Grossman and A. J. Miller, “Active millimeter-wave imaging for concealed weapons detection,” Proc. SPIE 5077, 62-70 (2003).
[CrossRef]

1997 (1)

W. K. Michener and P. F. Houhoulis, “Detection of vegetation changes associated with extensive flooding in a forested ecosystem,” Photogram. Eng. Remote Sens. 63, 1363-1374(1997).

1993 (1)

P. F. Goldsmith, C.-T. Hsieh, and G. R. Huguenin, “Focal plane imaging systems for millimeter wavelength,” IEEE Trans. Microwave Theory Tech. 41, 1664-1675 (1993).
[CrossRef]

1989 (1)

A. Singh, “Digital change detection techniques using remotely sensed data,” Int. J. Remote Sens. 10, 989-1003 (1989).
[CrossRef]

1979 (1)

C. J. Tucker, “Red and photographic infrared linear combination for monitoring vegetation,” Remote Sens. Environ. 8, 127-150 (1979).
[CrossRef]

Alexander, N. E.

N. E. Alexander, C. C. Andres, and R. Gonzalo, “Multispectral mm-wave imaging: materials and images,” Proc. SPIE 6948, 694803 (2008).
[CrossRef]

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. Attia, and I. Blankson, “Design and development of a high performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng. 44, 093202 (2005).
[CrossRef]

Anderton, R. N.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.

Andres, C. C.

N. E. Alexander, C. C. Andres, and R. Gonzalo, “Multispectral mm-wave imaging: materials and images,” Proc. SPIE 6948, 694803 (2008).
[CrossRef]

Appleby, R.

R. Appleby and B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55, 2944-2955 (2007).
[CrossRef]

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.

Attia, M.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. Attia, and I. Blankson, “Design and development of a high performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng. 44, 093202 (2005).
[CrossRef]

Barnes, A. R.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.

Blankson, I.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. Attia, and I. Blankson, “Design and development of a high performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng. 44, 093202 (2005).
[CrossRef]

Brondizio, E.

D. Lu, P. Mausel, E. Brondizio, and E. Moran, “Change detection techniques,” Int. J. Remote Sens. 25, 2365-2407 (2004).
[CrossRef]

Casto, C.

E. L. Jacobs, S. Moyer, C. C. Franck, F. C. Delucia, C. Casto, D. T. Petkie, S. R. Murrill, and C. E. Halford, “Concealed weapon identification using terahertz imaging sensors,” Proc. SPIE 6212, 62120J (2006).
[CrossRef]

Coppin, P.

P. Coppin, I. Jonckheere, K. Nackaerts, and B. Muys, “Digital change detection in ecosystem monitoring: a review,” Int. J. Remote Sens. 10, 1565-1596 (2004).

Coward, P. R.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.

De Lucia, F. C.

S. R. Murrill, E. L. Jacobs, S. K. Moyer, C. E. Halford, S. T. Griffin, F. C. De Lucia, D. T. Petkie, and C. C. Franck, “Terahertz imaging system performance model for concealed weapon identification,” Proc. SPIE 5989, 59891E(2005).
[CrossRef]

Delucia, F. C.

E. L. Jacobs, S. Moyer, C. C. Franck, F. C. Delucia, C. Casto, D. T. Petkie, S. R. Murrill, and C. E. Halford, “Concealed weapon identification using terahertz imaging sensors,” Proc. SPIE 6212, 62120J (2006).
[CrossRef]

Doyle, R.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. Attia, and I. Blankson, “Design and development of a high performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng. 44, 093202 (2005).
[CrossRef]

Dunn, D.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. Attia, and I. Blankson, “Design and development of a high performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng. 44, 093202 (2005).
[CrossRef]

Elhawil, A.

A. Elhawil, G. Koers, L. Zhang, and J. Stiens, “Reliable method for material characterization using a quasi-optical free-space measurement in the W band,” IET Sci. Meas. Technol. (to be published).

A. Elhawil, G. Koers, L. Zhang, J. Stiens, and R. Vounckx, “Comparison between two optimization algorithms to compute the complex permittivity of dielectric multilayer structures using a free space quasi-optical method in W band,” IET Sci. Meas. Technol. (to be published).

Feng, Q.

Franck, C. C.

E. L. Jacobs, S. Moyer, C. C. Franck, F. C. Delucia, C. Casto, D. T. Petkie, S. R. Murrill, and C. E. Halford, “Concealed weapon identification using terahertz imaging sensors,” Proc. SPIE 6212, 62120J (2006).
[CrossRef]

S. R. Murrill, E. L. Jacobs, S. K. Moyer, C. E. Halford, S. T. Griffin, F. C. De Lucia, D. T. Petkie, and C. C. Franck, “Terahertz imaging system performance model for concealed weapon identification,” Proc. SPIE 5989, 59891E(2005).
[CrossRef]

Goldsmith, P. F.

P. F. Goldsmith, C.-T. Hsieh, and G. R. Huguenin, “Focal plane imaging systems for millimeter wavelength,” IEEE Trans. Microwave Theory Tech. 41, 1664-1675 (1993).
[CrossRef]

Gonzalo, R.

N. E. Alexander, C. C. Andres, and R. Gonzalo, “Multispectral mm-wave imaging: materials and images,” Proc. SPIE 6948, 694803 (2008).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2005).

Griffin, S. T.

S. R. Murrill, E. L. Jacobs, S. K. Moyer, C. E. Halford, S. T. Griffin, F. C. De Lucia, D. T. Petkie, and C. C. Franck, “Terahertz imaging system performance model for concealed weapon identification,” Proc. SPIE 5989, 59891E(2005).
[CrossRef]

Grossman, E. N.

E. N. Grossman and A. J. Miller, “Active millimeter-wave imaging for concealed weapons detection,” Proc. SPIE 5077, 62-70 (2003).
[CrossRef]

Gumbmann, F.

P. T. Hue, F. Gumbmann, W. Jochen, and L. Schmidt, “A fast scanning W-band system of advanced millimeter-wave shot range imaging applications, ” Proceedings of IEEE The 3rd European Radar Conference (IEEE, 2006), pp. 146-149.

Halford, C. E.

E. L. Jacobs, S. Moyer, C. C. Franck, F. C. Delucia, C. Casto, D. T. Petkie, S. R. Murrill, and C. E. Halford, “Concealed weapon identification using terahertz imaging sensors,” Proc. SPIE 6212, 62120J (2006).
[CrossRef]

S. R. Murrill, E. L. Jacobs, S. K. Moyer, C. E. Halford, S. T. Griffin, F. C. De Lucia, D. T. Petkie, and C. C. Franck, “Terahertz imaging system performance model for concealed weapon identification,” Proc. SPIE 5989, 59891E(2005).
[CrossRef]

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Cylindrical millimeter-wave imaging technique and applications,” Proc. SPIE 6548, 654809 (2007).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Speckle in active millimeter-wave and terahertz imaging and spectroscopy,” Proc. SPIE 6211, 62110A (2006).
[CrossRef]

Houhoulis, P. F.

W. K. Michener and P. F. Houhoulis, “Detection of vegetation changes associated with extensive flooding in a forested ecosystem,” Photogram. Eng. Remote Sens. 63, 1363-1374(1997).

Hsieh, C.-T.

P. F. Goldsmith, C.-T. Hsieh, and G. R. Huguenin, “Focal plane imaging systems for millimeter wavelength,” IEEE Trans. Microwave Theory Tech. 41, 1664-1675 (1993).
[CrossRef]

Hue, P. T.

P. T. Hue, F. Gumbmann, W. Jochen, and L. Schmidt, “A fast scanning W-band system of advanced millimeter-wave shot range imaging applications, ” Proceedings of IEEE The 3rd European Radar Conference (IEEE, 2006), pp. 146-149.

Huguenin, G. R.

P. F. Goldsmith, C.-T. Hsieh, and G. R. Huguenin, “Focal plane imaging systems for millimeter wavelength,” IEEE Trans. Microwave Theory Tech. 41, 1664-1675 (1993).
[CrossRef]

Jacobs, E. L.

E. L. Jacobs, S. Moyer, C. C. Franck, F. C. Delucia, C. Casto, D. T. Petkie, S. R. Murrill, and C. E. Halford, “Concealed weapon identification using terahertz imaging sensors,” Proc. SPIE 6212, 62120J (2006).
[CrossRef]

S. R. Murrill, E. L. Jacobs, S. K. Moyer, C. E. Halford, S. T. Griffin, F. C. De Lucia, D. T. Petkie, and C. C. Franck, “Terahertz imaging system performance model for concealed weapon identification,” Proc. SPIE 5989, 59891E(2005).
[CrossRef]

Jäger, I.

G. Koers, I. Ocket, Q. Feng, V. Tavakol, I. Jäger, B. Nauwelaers, and J. Stiens, “Study of active millimeter-wave image speckle reduction by Hadamard phase pattern illumination,” J. Opt. Soc. Am. A 25, 312-317 (2008).
[CrossRef]

I. Jäger, L. Zhang, J. Stiens, G. Koers, H. Sahli, and R. Vounckx, “W-band speckle contrast images for inspection of concealed object,” Proc. SPIE 6616, 66160Y (2007).

Jochen, W.

P. T. Hue, F. Gumbmann, W. Jochen, and L. Schmidt, “A fast scanning W-band system of advanced millimeter-wave shot range imaging applications, ” Proceedings of IEEE The 3rd European Radar Conference (IEEE, 2006), pp. 146-149.

Jonckheere, I.

P. Coppin, I. Jonckheere, K. Nackaerts, and B. Muys, “Digital change detection in ecosystem monitoring: a review,” Int. J. Remote Sens. 10, 1565-1596 (2004).

Kemp, M. C.

M. C. Kemp, “Millimeter wave and terahertz technology for the detection of concealed threats--A review,” Proc. SPIE 6402, 6402D (2006).

Koers, G.

G. Koers, I. Ocket, Q. Feng, V. Tavakol, I. Jäger, B. Nauwelaers, and J. Stiens, “Study of active millimeter-wave image speckle reduction by Hadamard phase pattern illumination,” J. Opt. Soc. Am. A 25, 312-317 (2008).
[CrossRef]

I. Jäger, L. Zhang, J. Stiens, G. Koers, H. Sahli, and R. Vounckx, “W-band speckle contrast images for inspection of concealed object,” Proc. SPIE 6616, 66160Y (2007).

A. Elhawil, G. Koers, L. Zhang, J. Stiens, and R. Vounckx, “Comparison between two optimization algorithms to compute the complex permittivity of dielectric multilayer structures using a free space quasi-optical method in W band,” IET Sci. Meas. Technol. (to be published).

G. Koers, “Noise suppression in active millimeter wave imaging systems,” Ph.D dissertation (Vrije Universiteit Brussel, 2006).

A. Elhawil, G. Koers, L. Zhang, and J. Stiens, “Reliable method for material characterization using a quasi-optical free-space measurement in the W band,” IET Sci. Meas. Technol. (to be published).

Kolinko, V. G.

C. A. Martin and V. G. Kolinko, “Concealed weapons detection with an improved passive millimeter-wave imager,” Proc. SPIE 5410, 252-259 (2004).
[CrossRef]

Lettington, A. H.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. Attia, and I. Blankson, “Design and development of a high performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng. 44, 093202 (2005).
[CrossRef]

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.

Lu, D.

D. Lu, P. Mausel, E. Brondizio, and E. Moran, “Change detection techniques,” Int. J. Remote Sens. 25, 2365-2407 (2004).
[CrossRef]

Lyons, B. N.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. Attia, and I. Blankson, “Design and development of a high performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng. 44, 093202 (2005).
[CrossRef]

Martin, C. A.

C. A. Martin and V. G. Kolinko, “Concealed weapons detection with an improved passive millimeter-wave imager,” Proc. SPIE 5410, 252-259 (2004).
[CrossRef]

Mausel, P.

D. Lu, P. Mausel, E. Brondizio, and E. Moran, “Change detection techniques,” Int. J. Remote Sens. 25, 2365-2407 (2004).
[CrossRef]

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Cylindrical millimeter-wave imaging technique and applications,” Proc. SPIE 6548, 654809 (2007).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Speckle in active millimeter-wave and terahertz imaging and spectroscopy,” Proc. SPIE 6211, 62110A (2006).
[CrossRef]

Michener, W. K.

W. K. Michener and P. F. Houhoulis, “Detection of vegetation changes associated with extensive flooding in a forested ecosystem,” Photogram. Eng. Remote Sens. 63, 1363-1374(1997).

Miller, A. J.

E. N. Grossman and A. J. Miller, “Active millimeter-wave imaging for concealed weapons detection,” Proc. SPIE 5077, 62-70 (2003).
[CrossRef]

Moran, E.

D. Lu, P. Mausel, E. Brondizio, and E. Moran, “Change detection techniques,” Int. J. Remote Sens. 25, 2365-2407 (2004).
[CrossRef]

Morore, M.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.

Moyer, S.

E. L. Jacobs, S. Moyer, C. C. Franck, F. C. Delucia, C. Casto, D. T. Petkie, S. R. Murrill, and C. E. Halford, “Concealed weapon identification using terahertz imaging sensors,” Proc. SPIE 6212, 62120J (2006).
[CrossRef]

Moyer, S. K.

S. R. Murrill, E. L. Jacobs, S. K. Moyer, C. E. Halford, S. T. Griffin, F. C. De Lucia, D. T. Petkie, and C. C. Franck, “Terahertz imaging system performance model for concealed weapon identification,” Proc. SPIE 5989, 59891E(2005).
[CrossRef]

Munday, P. D.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.

Murrill, S. R.

E. L. Jacobs, S. Moyer, C. C. Franck, F. C. Delucia, C. Casto, D. T. Petkie, S. R. Murrill, and C. E. Halford, “Concealed weapon identification using terahertz imaging sensors,” Proc. SPIE 6212, 62120J (2006).
[CrossRef]

S. R. Murrill, E. L. Jacobs, S. K. Moyer, C. E. Halford, S. T. Griffin, F. C. De Lucia, D. T. Petkie, and C. C. Franck, “Terahertz imaging system performance model for concealed weapon identification,” Proc. SPIE 5989, 59891E(2005).
[CrossRef]

Muys, B.

P. Coppin, I. Jonckheere, K. Nackaerts, and B. Muys, “Digital change detection in ecosystem monitoring: a review,” Int. J. Remote Sens. 10, 1565-1596 (2004).

Nackaerts, K.

P. Coppin, I. Jonckheere, K. Nackaerts, and B. Muys, “Digital change detection in ecosystem monitoring: a review,” Int. J. Remote Sens. 10, 1565-1596 (2004).

Nauwelaers, B.

Ocket, I.

Petkie, D. T.

E. L. Jacobs, S. Moyer, C. C. Franck, F. C. Delucia, C. Casto, D. T. Petkie, S. R. Murrill, and C. E. Halford, “Concealed weapon identification using terahertz imaging sensors,” Proc. SPIE 6212, 62120J (2006).
[CrossRef]

S. R. Murrill, E. L. Jacobs, S. K. Moyer, C. E. Halford, S. T. Griffin, F. C. De Lucia, D. T. Petkie, and C. C. Franck, “Terahertz imaging system performance model for concealed weapon identification,” Proc. SPIE 5989, 59891E(2005).
[CrossRef]

Price, S.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.

Robertson, A.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.

Sahli, H.

I. Jäger, L. Zhang, J. Stiens, G. Koers, H. Sahli, and R. Vounckx, “W-band speckle contrast images for inspection of concealed object,” Proc. SPIE 6616, 66160Y (2007).

Salmon, N. A.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.

Schmidt, L.

P. T. Hue, F. Gumbmann, W. Jochen, and L. Schmidt, “A fast scanning W-band system of advanced millimeter-wave shot range imaging applications, ” Proceedings of IEEE The 3rd European Radar Conference (IEEE, 2006), pp. 146-149.

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Cylindrical millimeter-wave imaging technique and applications,” Proc. SPIE 6548, 654809 (2007).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Speckle in active millimeter-wave and terahertz imaging and spectroscopy,” Proc. SPIE 6211, 62110A (2006).
[CrossRef]

Sinclair, G. N.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.

Singh, A.

A. Singh, “Digital change detection techniques using remotely sensed data,” Int. J. Remote Sens. 10, 989-1003 (1989).
[CrossRef]

Stiens, J.

G. Koers, I. Ocket, Q. Feng, V. Tavakol, I. Jäger, B. Nauwelaers, and J. Stiens, “Study of active millimeter-wave image speckle reduction by Hadamard phase pattern illumination,” J. Opt. Soc. Am. A 25, 312-317 (2008).
[CrossRef]

I. Jäger, L. Zhang, J. Stiens, G. Koers, H. Sahli, and R. Vounckx, “W-band speckle contrast images for inspection of concealed object,” Proc. SPIE 6616, 66160Y (2007).

A. Elhawil, G. Koers, L. Zhang, and J. Stiens, “Reliable method for material characterization using a quasi-optical free-space measurement in the W band,” IET Sci. Meas. Technol. (to be published).

A. Elhawil, G. Koers, L. Zhang, J. Stiens, and R. Vounckx, “Comparison between two optimization algorithms to compute the complex permittivity of dielectric multilayer structures using a free space quasi-optical method in W band,” IET Sci. Meas. Technol. (to be published).

Tavakol, V.

Tucker, C. J.

C. J. Tucker, “Red and photographic infrared linear combination for monitoring vegetation,” Remote Sens. Environ. 8, 127-150 (1979).
[CrossRef]

Vounckx, R.

I. Jäger, L. Zhang, J. Stiens, G. Koers, H. Sahli, and R. Vounckx, “W-band speckle contrast images for inspection of concealed object,” Proc. SPIE 6616, 66160Y (2007).

A. Elhawil, G. Koers, L. Zhang, J. Stiens, and R. Vounckx, “Comparison between two optimization algorithms to compute the complex permittivity of dielectric multilayer structures using a free space quasi-optical method in W band,” IET Sci. Meas. Technol. (to be published).

Wabby, A.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. Attia, and I. Blankson, “Design and development of a high performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng. 44, 093202 (2005).
[CrossRef]

Wallace, B.

R. Appleby and B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55, 2944-2955 (2007).
[CrossRef]

Walshe, J.

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. Attia, and I. Blankson, “Design and development of a high performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng. 44, 093202 (2005).
[CrossRef]

Zhang, L.

I. Jäger, L. Zhang, J. Stiens, G. Koers, H. Sahli, and R. Vounckx, “W-band speckle contrast images for inspection of concealed object,” Proc. SPIE 6616, 66160Y (2007).

A. Elhawil, G. Koers, L. Zhang, J. Stiens, and R. Vounckx, “Comparison between two optimization algorithms to compute the complex permittivity of dielectric multilayer structures using a free space quasi-optical method in W band,” IET Sci. Meas. Technol. (to be published).

A. Elhawil, G. Koers, L. Zhang, and J. Stiens, “Reliable method for material characterization using a quasi-optical free-space measurement in the W band,” IET Sci. Meas. Technol. (to be published).

IEEE Trans. Antennas Propag. (1)

R. Appleby and B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55, 2944-2955 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. F. Goldsmith, C.-T. Hsieh, and G. R. Huguenin, “Focal plane imaging systems for millimeter wavelength,” IEEE Trans. Microwave Theory Tech. 41, 1664-1675 (1993).
[CrossRef]

Int. J. Remote Sens. (3)

D. Lu, P. Mausel, E. Brondizio, and E. Moran, “Change detection techniques,” Int. J. Remote Sens. 25, 2365-2407 (2004).
[CrossRef]

A. Singh, “Digital change detection techniques using remotely sensed data,” Int. J. Remote Sens. 10, 989-1003 (1989).
[CrossRef]

P. Coppin, I. Jonckheere, K. Nackaerts, and B. Muys, “Digital change detection in ecosystem monitoring: a review,” Int. J. Remote Sens. 10, 1565-1596 (2004).

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. Attia, and I. Blankson, “Design and development of a high performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng. 44, 093202 (2005).
[CrossRef]

Photogram. Eng. Remote Sens. (1)

W. K. Michener and P. F. Houhoulis, “Detection of vegetation changes associated with extensive flooding in a forested ecosystem,” Photogram. Eng. Remote Sens. 63, 1363-1374(1997).

Proc. SPIE (9)

E. N. Grossman and A. J. Miller, “Active millimeter-wave imaging for concealed weapons detection,” Proc. SPIE 5077, 62-70 (2003).
[CrossRef]

S. R. Murrill, E. L. Jacobs, S. K. Moyer, C. E. Halford, S. T. Griffin, F. C. De Lucia, D. T. Petkie, and C. C. Franck, “Terahertz imaging system performance model for concealed weapon identification,” Proc. SPIE 5989, 59891E(2005).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Cylindrical millimeter-wave imaging technique and applications,” Proc. SPIE 6548, 654809 (2007).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Speckle in active millimeter-wave and terahertz imaging and spectroscopy,” Proc. SPIE 6211, 62110A (2006).
[CrossRef]

M. C. Kemp, “Millimeter wave and terahertz technology for the detection of concealed threats--A review,” Proc. SPIE 6402, 6402D (2006).

C. A. Martin and V. G. Kolinko, “Concealed weapons detection with an improved passive millimeter-wave imager,” Proc. SPIE 5410, 252-259 (2004).
[CrossRef]

E. L. Jacobs, S. Moyer, C. C. Franck, F. C. Delucia, C. Casto, D. T. Petkie, S. R. Murrill, and C. E. Halford, “Concealed weapon identification using terahertz imaging sensors,” Proc. SPIE 6212, 62120J (2006).
[CrossRef]

I. Jäger, L. Zhang, J. Stiens, G. Koers, H. Sahli, and R. Vounckx, “W-band speckle contrast images for inspection of concealed object,” Proc. SPIE 6616, 66160Y (2007).

N. E. Alexander, C. C. Andres, and R. Gonzalo, “Multispectral mm-wave imaging: materials and images,” Proc. SPIE 6948, 694803 (2008).
[CrossRef]

Remote Sens. Environ. (1)

C. J. Tucker, “Red and photographic infrared linear combination for monitoring vegetation,” Remote Sens. Environ. 8, 127-150 (1979).
[CrossRef]

Other (7)

Committee on Assessment of Security Technologies for Transportation of National Research Council, Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons (The National Academies, 2007).

A. Elhawil, G. Koers, L. Zhang, and J. Stiens, “Reliable method for material characterization using a quasi-optical free-space measurement in the W band,” IET Sci. Meas. Technol. (to be published).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2005).

G. Koers, “Noise suppression in active millimeter wave imaging systems,” Ph.D dissertation (Vrije Universiteit Brussel, 2006).

A. Elhawil, G. Koers, L. Zhang, J. Stiens, and R. Vounckx, “Comparison between two optimization algorithms to compute the complex permittivity of dielectric multilayer structures using a free space quasi-optical method in W band,” IET Sci. Meas. Technol. (to be published).

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.

P. T. Hue, F. Gumbmann, W. Jochen, and L. Schmidt, “A fast scanning W-band system of advanced millimeter-wave shot range imaging applications, ” Proceedings of IEEE The 3rd European Radar Conference (IEEE, 2006), pp. 146-149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Typical scene for mm-wave imaging systems.

Fig. 2
Fig. 2

Quasi-optical schematic of the VNA.

Fig. 3
Fig. 3

Reflectivity of human body (solid curve), metal (dashed curve), cotton T-shirt (dotted curve), and EMV absorber (dashed dotted curve).

Fig. 4
Fig. 4

Reflectivity of Eccosorb absorber (solid curve), 1.5 mm thick PVC slab (dashed curve), 5 mm thick PVC slab (dashed dotted curve), and 12 mm thick PVC slab (dotted curve).

Fig. 5
Fig. 5

Schematic of the experimental active millimeter-wave imaging setup.

Fig. 6
Fig. 6

Cross section of the metal strips.

Fig. 7
Fig. 7

Single-line millimeter-wave images of the object in Fig. 6 versus frequency: (a) measurement, (b) simulation. (Intensity is represented by color: red is high and blue is low.)

Fig. 8
Fig. 8

Test scene 1. (a) Drawing. Millimeter-wave image at (b)  78 GHz , (c)  86 GHz , (d)  94 GHz , (e)  102 GHz , (f)  110 GHz .

Fig. 9
Fig. 9

Test scene 2. (a) Visual image. Millimeter-wave image at (b)  78 GHz , (c)  86 GHz , (d)  94 GHz , (e)  103 GHz , (f)  110 GHz .

Fig. 10
Fig. 10

(a) Image differencing result of the multispectral images in Figs. 8b, 8c, 8d, 8e, 8f, (b) NDVI result of the multispectral images in Figs. 8b, 8c, 8d, 8e, 8f.

Fig. 11
Fig. 11

PCs of the multispectral images in Figs. 8b, 8c, 8d, 8e, 8f: (a) first, (b) second, (c) third, (d) fourth.

Fig. 12
Fig. 12

(a) Image differencing result of the multispectral images in Figs. 9b, 9c, 9d, 9e, 9f, (b) NDVI result of the multispectral images in Figs. 9b, 9c, 9d, 9e, 9f.

Fig. 13
Fig. 13

PCs of the multispectral images in Figs. 9b, 9c, 9d, 9e, 9f: (a) first, (b) second, (c) third, (d) fourth.

Fig. 14
Fig. 14

Combined false color image: (a) the scene in Figs. 8a, (b) the scene in Fig. 9a.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

D x m , n ( i , j ) = x m ( i , j ) x n ( i , j ) ,
A D x ( i , j ) = 2 N ( N 1 ) m = 1 N 1 n = m + 1 N | D x m , n ( i , j ) | .
NDVI m , n ( i , j ) = [ x m ( i , j ) x n ( i , j ) ] / [ x m ( i , j ) + x n ( i , j ) ] ,
A NDVI ( i , j ) = 2 N ( N 1 ) m = 1 N 1 n = m + 1 N | NDVI m , n ( i , j ) | .
ImageVector = ( x 1 x 2 x 3 · · x I · J ) .
ImageMatrix = ( ImageVector 1 ImageVector 2 · · ImageVector N ) .
Image Contrast = | P det ( Target ) P det ( Background ) | P det ( Target ) + P det ( Background ) ,

Metrics