Abstract

A nonintrusive low-cost sensor based on silicon photodiode detectors has been designed to analyze the formation and behavior of excited CH* and C2* radicals in the combustion process by sensing the spectral emission of hydrocarbon flames. The sensor was validated by performing two sets of experiments for both nonconfined and confined flames. For a nonconfined oil flame, the sensor responses for the axial intensity were highly correlated with the measurements obtained with a radiometer. For confined gas flames the ratio between the signal corresponding to C2* and CH* was successfully correlated with the CO pollutant emissions and the combustion efficiency. These results give additional insight on how to prevent an incomplete combustion using spectral information. The fast response, the nonintrusive character, and the instantaneous measurement of the needed spectral information makes the proposed optical sensor a key element in the development of advanced control strategies for combustion processes.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Pau, J. Anduaga, C. Rivera, A. Navarro, I. Alava, M. Redondo, and E. Munoz, “Optical sensors based on iii-nitride photodetectors for flame sensing and combustion monitoring,” Proc. IEEE 45, 7498-7503 (2006).
  2. J. Ballester, A. Sanz, R. Hernandez, and A. Smolarz, “Detection and analysis of emitted radiation for advanced monitoring and control of combustors,” Proc. SPIE 5948, 594824.1-594824.11 (2005).
  3. C. Martins, J. Carvalho, and M. Ferreira, “Ch and C2 radicals characterization in natural gas turbulent diffusion flames,” J. Braz. Soc. Mech. Sci. Eng. 27, 110-118 (2005).
    [CrossRef]
  4. D. Sbarbaro and O. Farias, “Real time monitoring and characterization of flames by principal-components analysis,” Combust. Flame 132, 591-595 (2003).
    [CrossRef]
  5. N. Docquier and S. Candel, “Combustion control and sensors: a review,” Prog. Energy Combust. Sci. 28, 107-150(2002).
    [CrossRef]
  6. J. B. Michel, C. Champinot, and J. Dugue, “State of the art on emerging combustion control sensors,” presented at the 6th International Conference on Technologies and Combustion for a Clean Environment, 2001.
  7. C. Romero, X. Li, S. Keyvan, and R. Rossow, “Spectrometer-based combustion monitoring for flame stoichiometry and temperature control,” Appl. Thermal Engineer. 25, 659-676 (2005).
    [CrossRef]
  8. A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Katterle, M. Kollner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schafer, K. P. Shindler, V. Sick, R. Suntz, and J. Wolfrum, “Laser in situ monitoring of combustion processes,” Appl. Opt. 29, 4860-4872 (1990).
    [CrossRef] [PubMed]
  9. M. Khesin, “Demonstration of new frequency-based flame monitoring system,” Proceedings of the 59th Annual American Power Conference, Vol. 58-II (1997), pp. 1010-1013.
  10. J. Michel, O. Chetelat, N. Weber, and O. Sari, “Flame signature as a low-cost flame control method,” Proceedings of the 5th International Conference on Technologies and Combustion for a Clean Environment (Combustion Institute, 1999), pp. 1251-1253.
  11. G. Zizak, “Flame emission spectroscopy: fundamentals and applications,” Tech. Rep. (Instituto per la Tecnologia dei Materiali e dei Processi Energitici, 2000).
  12. P. Ngendakumana, B. Zuo, and E. Winandy, “A spectroscopic study of flames for a pollutant formation regulation in a real oil boiler,” presented at the 2nd International Conference on Technologies and Combustion for a Clean Environment, 1993.
  13. M. Morrel, J. Seitzman, M. Wilensky, E. Lubarsky, J. Lee, and B. Zinn, “Interpretation of optical emissions for sensors in liquid fueled combustors,” AIAA J. 787, 1-12 (2001).
  14. A. G. Gaydon and H. G. Wolfhard, The Spectroscopy of Flames, 1st ed. (Chapman and Hall, 1957), Chap. 7.

2006 (1)

J. L. Pau, J. Anduaga, C. Rivera, A. Navarro, I. Alava, M. Redondo, and E. Munoz, “Optical sensors based on iii-nitride photodetectors for flame sensing and combustion monitoring,” Proc. IEEE 45, 7498-7503 (2006).

2005 (3)

J. Ballester, A. Sanz, R. Hernandez, and A. Smolarz, “Detection and analysis of emitted radiation for advanced monitoring and control of combustors,” Proc. SPIE 5948, 594824.1-594824.11 (2005).

C. Martins, J. Carvalho, and M. Ferreira, “Ch and C2 radicals characterization in natural gas turbulent diffusion flames,” J. Braz. Soc. Mech. Sci. Eng. 27, 110-118 (2005).
[CrossRef]

C. Romero, X. Li, S. Keyvan, and R. Rossow, “Spectrometer-based combustion monitoring for flame stoichiometry and temperature control,” Appl. Thermal Engineer. 25, 659-676 (2005).
[CrossRef]

2003 (1)

D. Sbarbaro and O. Farias, “Real time monitoring and characterization of flames by principal-components analysis,” Combust. Flame 132, 591-595 (2003).
[CrossRef]

2002 (1)

N. Docquier and S. Candel, “Combustion control and sensors: a review,” Prog. Energy Combust. Sci. 28, 107-150(2002).
[CrossRef]

2001 (2)

J. B. Michel, C. Champinot, and J. Dugue, “State of the art on emerging combustion control sensors,” presented at the 6th International Conference on Technologies and Combustion for a Clean Environment, 2001.

M. Morrel, J. Seitzman, M. Wilensky, E. Lubarsky, J. Lee, and B. Zinn, “Interpretation of optical emissions for sensors in liquid fueled combustors,” AIAA J. 787, 1-12 (2001).

2000 (1)

G. Zizak, “Flame emission spectroscopy: fundamentals and applications,” Tech. Rep. (Instituto per la Tecnologia dei Materiali e dei Processi Energitici, 2000).

1999 (1)

J. Michel, O. Chetelat, N. Weber, and O. Sari, “Flame signature as a low-cost flame control method,” Proceedings of the 5th International Conference on Technologies and Combustion for a Clean Environment (Combustion Institute, 1999), pp. 1251-1253.

1997 (1)

M. Khesin, “Demonstration of new frequency-based flame monitoring system,” Proceedings of the 59th Annual American Power Conference, Vol. 58-II (1997), pp. 1010-1013.

1993 (1)

P. Ngendakumana, B. Zuo, and E. Winandy, “A spectroscopic study of flames for a pollutant formation regulation in a real oil boiler,” presented at the 2nd International Conference on Technologies and Combustion for a Clean Environment, 1993.

1990 (1)

1957 (1)

A. G. Gaydon and H. G. Wolfhard, The Spectroscopy of Flames, 1st ed. (Chapman and Hall, 1957), Chap. 7.

Alava, I.

J. L. Pau, J. Anduaga, C. Rivera, A. Navarro, I. Alava, M. Redondo, and E. Munoz, “Optical sensors based on iii-nitride photodetectors for flame sensing and combustion monitoring,” Proc. IEEE 45, 7498-7503 (2006).

Anduaga, J.

J. L. Pau, J. Anduaga, C. Rivera, A. Navarro, I. Alava, M. Redondo, and E. Munoz, “Optical sensors based on iii-nitride photodetectors for flame sensing and combustion monitoring,” Proc. IEEE 45, 7498-7503 (2006).

Arnold, A.

Ballester, J.

J. Ballester, A. Sanz, R. Hernandez, and A. Smolarz, “Detection and analysis of emitted radiation for advanced monitoring and control of combustors,” Proc. SPIE 5948, 594824.1-594824.11 (2005).

Becker, H.

Candel, S.

N. Docquier and S. Candel, “Combustion control and sensors: a review,” Prog. Energy Combust. Sci. 28, 107-150(2002).
[CrossRef]

Carvalho, J.

C. Martins, J. Carvalho, and M. Ferreira, “Ch and C2 radicals characterization in natural gas turbulent diffusion flames,” J. Braz. Soc. Mech. Sci. Eng. 27, 110-118 (2005).
[CrossRef]

Champinot, C.

J. B. Michel, C. Champinot, and J. Dugue, “State of the art on emerging combustion control sensors,” presented at the 6th International Conference on Technologies and Combustion for a Clean Environment, 2001.

Chetelat, O.

J. Michel, O. Chetelat, N. Weber, and O. Sari, “Flame signature as a low-cost flame control method,” Proceedings of the 5th International Conference on Technologies and Combustion for a Clean Environment (Combustion Institute, 1999), pp. 1251-1253.

Docquier, N.

N. Docquier and S. Candel, “Combustion control and sensors: a review,” Prog. Energy Combust. Sci. 28, 107-150(2002).
[CrossRef]

Dugue, J.

J. B. Michel, C. Champinot, and J. Dugue, “State of the art on emerging combustion control sensors,” presented at the 6th International Conference on Technologies and Combustion for a Clean Environment, 2001.

Farias, O.

D. Sbarbaro and O. Farias, “Real time monitoring and characterization of flames by principal-components analysis,” Combust. Flame 132, 591-595 (2003).
[CrossRef]

Ferreira, M.

C. Martins, J. Carvalho, and M. Ferreira, “Ch and C2 radicals characterization in natural gas turbulent diffusion flames,” J. Braz. Soc. Mech. Sci. Eng. 27, 110-118 (2005).
[CrossRef]

Gaydon, A. G.

A. G. Gaydon and H. G. Wolfhard, The Spectroscopy of Flames, 1st ed. (Chapman and Hall, 1957), Chap. 7.

Hemberger, R.

Hentschel, W.

Hernandez, R.

J. Ballester, A. Sanz, R. Hernandez, and A. Smolarz, “Detection and analysis of emitted radiation for advanced monitoring and control of combustors,” Proc. SPIE 5948, 594824.1-594824.11 (2005).

Katterle, W.

Keyvan, S.

C. Romero, X. Li, S. Keyvan, and R. Rossow, “Spectrometer-based combustion monitoring for flame stoichiometry and temperature control,” Appl. Thermal Engineer. 25, 659-676 (2005).
[CrossRef]

Khesin, M.

M. Khesin, “Demonstration of new frequency-based flame monitoring system,” Proceedings of the 59th Annual American Power Conference, Vol. 58-II (1997), pp. 1010-1013.

Kollner, M.

Lee, J.

M. Morrel, J. Seitzman, M. Wilensky, E. Lubarsky, J. Lee, and B. Zinn, “Interpretation of optical emissions for sensors in liquid fueled combustors,” AIAA J. 787, 1-12 (2001).

Li, X.

C. Romero, X. Li, S. Keyvan, and R. Rossow, “Spectrometer-based combustion monitoring for flame stoichiometry and temperature control,” Appl. Thermal Engineer. 25, 659-676 (2005).
[CrossRef]

Lubarsky, E.

M. Morrel, J. Seitzman, M. Wilensky, E. Lubarsky, J. Lee, and B. Zinn, “Interpretation of optical emissions for sensors in liquid fueled combustors,” AIAA J. 787, 1-12 (2001).

Martins, C.

C. Martins, J. Carvalho, and M. Ferreira, “Ch and C2 radicals characterization in natural gas turbulent diffusion flames,” J. Braz. Soc. Mech. Sci. Eng. 27, 110-118 (2005).
[CrossRef]

Meienburg, W.

Michel, J.

J. Michel, O. Chetelat, N. Weber, and O. Sari, “Flame signature as a low-cost flame control method,” Proceedings of the 5th International Conference on Technologies and Combustion for a Clean Environment (Combustion Institute, 1999), pp. 1251-1253.

Michel, J. B.

J. B. Michel, C. Champinot, and J. Dugue, “State of the art on emerging combustion control sensors,” presented at the 6th International Conference on Technologies and Combustion for a Clean Environment, 2001.

Monkhouse, P.

Morrel, M.

M. Morrel, J. Seitzman, M. Wilensky, E. Lubarsky, J. Lee, and B. Zinn, “Interpretation of optical emissions for sensors in liquid fueled combustors,” AIAA J. 787, 1-12 (2001).

Munoz, E.

J. L. Pau, J. Anduaga, C. Rivera, A. Navarro, I. Alava, M. Redondo, and E. Munoz, “Optical sensors based on iii-nitride photodetectors for flame sensing and combustion monitoring,” Proc. IEEE 45, 7498-7503 (2006).

Navarro, A.

J. L. Pau, J. Anduaga, C. Rivera, A. Navarro, I. Alava, M. Redondo, and E. Munoz, “Optical sensors based on iii-nitride photodetectors for flame sensing and combustion monitoring,” Proc. IEEE 45, 7498-7503 (2006).

Neckel, H.

Ngendakumana, P.

P. Ngendakumana, B. Zuo, and E. Winandy, “A spectroscopic study of flames for a pollutant formation regulation in a real oil boiler,” presented at the 2nd International Conference on Technologies and Combustion for a Clean Environment, 1993.

Pau, J. L.

J. L. Pau, J. Anduaga, C. Rivera, A. Navarro, I. Alava, M. Redondo, and E. Munoz, “Optical sensors based on iii-nitride photodetectors for flame sensing and combustion monitoring,” Proc. IEEE 45, 7498-7503 (2006).

Redondo, M.

J. L. Pau, J. Anduaga, C. Rivera, A. Navarro, I. Alava, M. Redondo, and E. Munoz, “Optical sensors based on iii-nitride photodetectors for flame sensing and combustion monitoring,” Proc. IEEE 45, 7498-7503 (2006).

Rivera, C.

J. L. Pau, J. Anduaga, C. Rivera, A. Navarro, I. Alava, M. Redondo, and E. Munoz, “Optical sensors based on iii-nitride photodetectors for flame sensing and combustion monitoring,” Proc. IEEE 45, 7498-7503 (2006).

Romero, C.

C. Romero, X. Li, S. Keyvan, and R. Rossow, “Spectrometer-based combustion monitoring for flame stoichiometry and temperature control,” Appl. Thermal Engineer. 25, 659-676 (2005).
[CrossRef]

Rossow, R.

C. Romero, X. Li, S. Keyvan, and R. Rossow, “Spectrometer-based combustion monitoring for flame stoichiometry and temperature control,” Appl. Thermal Engineer. 25, 659-676 (2005).
[CrossRef]

Sanz, A.

J. Ballester, A. Sanz, R. Hernandez, and A. Smolarz, “Detection and analysis of emitted radiation for advanced monitoring and control of combustors,” Proc. SPIE 5948, 594824.1-594824.11 (2005).

Sari, O.

J. Michel, O. Chetelat, N. Weber, and O. Sari, “Flame signature as a low-cost flame control method,” Proceedings of the 5th International Conference on Technologies and Combustion for a Clean Environment (Combustion Institute, 1999), pp. 1251-1253.

Sbarbaro, D.

D. Sbarbaro and O. Farias, “Real time monitoring and characterization of flames by principal-components analysis,” Combust. Flame 132, 591-595 (2003).
[CrossRef]

Schafer, M.

Seitzman, J.

M. Morrel, J. Seitzman, M. Wilensky, E. Lubarsky, J. Lee, and B. Zinn, “Interpretation of optical emissions for sensors in liquid fueled combustors,” AIAA J. 787, 1-12 (2001).

Shindler, K. P.

Sick, V.

Smolarz, A.

J. Ballester, A. Sanz, R. Hernandez, and A. Smolarz, “Detection and analysis of emitted radiation for advanced monitoring and control of combustors,” Proc. SPIE 5948, 594824.1-594824.11 (2005).

Suntz, R.

Weber, N.

J. Michel, O. Chetelat, N. Weber, and O. Sari, “Flame signature as a low-cost flame control method,” Proceedings of the 5th International Conference on Technologies and Combustion for a Clean Environment (Combustion Institute, 1999), pp. 1251-1253.

Wilensky, M.

M. Morrel, J. Seitzman, M. Wilensky, E. Lubarsky, J. Lee, and B. Zinn, “Interpretation of optical emissions for sensors in liquid fueled combustors,” AIAA J. 787, 1-12 (2001).

Winandy, E.

P. Ngendakumana, B. Zuo, and E. Winandy, “A spectroscopic study of flames for a pollutant formation regulation in a real oil boiler,” presented at the 2nd International Conference on Technologies and Combustion for a Clean Environment, 1993.

Wolfhard, H. G.

A. G. Gaydon and H. G. Wolfhard, The Spectroscopy of Flames, 1st ed. (Chapman and Hall, 1957), Chap. 7.

Wolfrum, J.

Zinn, B.

M. Morrel, J. Seitzman, M. Wilensky, E. Lubarsky, J. Lee, and B. Zinn, “Interpretation of optical emissions for sensors in liquid fueled combustors,” AIAA J. 787, 1-12 (2001).

Zizak, G.

G. Zizak, “Flame emission spectroscopy: fundamentals and applications,” Tech. Rep. (Instituto per la Tecnologia dei Materiali e dei Processi Energitici, 2000).

Zuo, B.

P. Ngendakumana, B. Zuo, and E. Winandy, “A spectroscopic study of flames for a pollutant formation regulation in a real oil boiler,” presented at the 2nd International Conference on Technologies and Combustion for a Clean Environment, 1993.

AIAA J. (1)

M. Morrel, J. Seitzman, M. Wilensky, E. Lubarsky, J. Lee, and B. Zinn, “Interpretation of optical emissions for sensors in liquid fueled combustors,” AIAA J. 787, 1-12 (2001).

Appl. Opt. (1)

Appl. Thermal Engineer. (1)

C. Romero, X. Li, S. Keyvan, and R. Rossow, “Spectrometer-based combustion monitoring for flame stoichiometry and temperature control,” Appl. Thermal Engineer. 25, 659-676 (2005).
[CrossRef]

Combust. Flame (1)

D. Sbarbaro and O. Farias, “Real time monitoring and characterization of flames by principal-components analysis,” Combust. Flame 132, 591-595 (2003).
[CrossRef]

J. Braz. Soc. Mech. Sci. Eng. (1)

C. Martins, J. Carvalho, and M. Ferreira, “Ch and C2 radicals characterization in natural gas turbulent diffusion flames,” J. Braz. Soc. Mech. Sci. Eng. 27, 110-118 (2005).
[CrossRef]

Proc. IEEE (1)

J. L. Pau, J. Anduaga, C. Rivera, A. Navarro, I. Alava, M. Redondo, and E. Munoz, “Optical sensors based on iii-nitride photodetectors for flame sensing and combustion monitoring,” Proc. IEEE 45, 7498-7503 (2006).

Proc. SPIE (1)

J. Ballester, A. Sanz, R. Hernandez, and A. Smolarz, “Detection and analysis of emitted radiation for advanced monitoring and control of combustors,” Proc. SPIE 5948, 594824.1-594824.11 (2005).

Prog. Energy Combust. Sci. (1)

N. Docquier and S. Candel, “Combustion control and sensors: a review,” Prog. Energy Combust. Sci. 28, 107-150(2002).
[CrossRef]

Other (6)

J. B. Michel, C. Champinot, and J. Dugue, “State of the art on emerging combustion control sensors,” presented at the 6th International Conference on Technologies and Combustion for a Clean Environment, 2001.

M. Khesin, “Demonstration of new frequency-based flame monitoring system,” Proceedings of the 59th Annual American Power Conference, Vol. 58-II (1997), pp. 1010-1013.

J. Michel, O. Chetelat, N. Weber, and O. Sari, “Flame signature as a low-cost flame control method,” Proceedings of the 5th International Conference on Technologies and Combustion for a Clean Environment (Combustion Institute, 1999), pp. 1251-1253.

G. Zizak, “Flame emission spectroscopy: fundamentals and applications,” Tech. Rep. (Instituto per la Tecnologia dei Materiali e dei Processi Energitici, 2000).

P. Ngendakumana, B. Zuo, and E. Winandy, “A spectroscopic study of flames for a pollutant formation regulation in a real oil boiler,” presented at the 2nd International Conference on Technologies and Combustion for a Clean Environment, 1993.

A. G. Gaydon and H. G. Wolfhard, The Spectroscopy of Flames, 1st ed. (Chapman and Hall, 1957), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Typical spectrum of gas and oil flames.

Fig. 2
Fig. 2

Responsivity of the T-18 silicon photodiodes and transmission of the filters assembled with the photodiodes.

Fig. 3
Fig. 3

Spectral band of the assembled filters and syntonization in (a) the gas flame spectrum and (b) the oil flame spectrum.

Fig. 4
Fig. 4

Linear response at 430 nm of (a) the photodiode sensor and USB2000 radiometer at 22 ° C and of (b) the photodiode sensor at 40 ° C .

Fig. 5
Fig. 5

Linear response at 514.5 nm of (a) the photodiode sensor and USB2000 radiometer at 22 ° C and of (b) the photodiode sensor at 40 ° C .

Fig. 6
Fig. 6

Test bench for (a) nonconfined oil fuel and (b) confined gas fuel tests.

Fig. 7
Fig. 7

Online sensor signals measured in a confined gas flame.

Fig. 8
Fig. 8

Sensing the CH * radical formation along the flame versus axial position by using (a) radiometer intensity I rad , 430 nm and (b) intensity sensor I s , 430 nm .

Fig. 9
Fig. 9

Sensing the C 2 * radical formation along the flame versus axial position by using (a) radiometer intensity I rad , 514.5 nm and (b) intensity sensor I s , 514.5 nm .

Fig. 10
Fig. 10

Experimental results at LFR and HFR for confined gas flame. (a) Thermal efficiency of the boiler versus air excess ( lamda ( 1 + e ) ). (b)  CH * and C 2 * radical-behavior sensing by using intensity sensor I s , 430 nm and I s , 514.5 nm versus air excess. (c)  C 2 * / CH * intensity ratio versus air excess obtained by using the photodiode sensor intensities.

Tables (2)

Tables Icon

Table 1 Flame Emission Wavelengths for Common Combustion Radicals

Tables Icon

Table 2 Cross Correlation between the Measurement Obtained by the Radiometer and the Proposed Sensor for Different Air Steps (Different Combustion Conditions)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I λ ( α , β , T ) = c 1 · β λ α + 5 · exp { c 2 λ · T } ,
i p h , λ m ( λ m ) = ( λ m ) · P opt , λ m ; m = 1 , 2 ,
V out , λ m ( V ) i p h , λ m ( μA ) = G re ; m = 1 , 2 ,
V out , λ m = G re · ( λ m ) · P opt , λ m ; m = 1 , 2.
C = ( λ 2 ) ( λ 1 ) · T x ( λ 2 ) T x ( λ 1 ) .
I s , λ 1 = C · V out , λ 1 ,
I s , λ 2 = V out , λ 2 ,
r x , y 2 = cov ( x , y ) var ( x ) · var ( y ) ,
C 2 * CH * = I s , λ 2 I s , λ 1 = V out , λ 2 C · V out , λ 1 ,
lambda ( 1 + e ) = ( air / fuel ) actual ( air / fuel ) stoichiometric .

Metrics