Abstract

Field and laboratory measurements using an interferometer spectrometer based on the Sagnac interferometer using a microbolometer array detector are presented. Remotely obtained signatures collected with this instrument and with a cryogenic IR spectrometer are compared and shown to closely correspond. Ground-to-ground and air-to-ground image products are presented that demonstrate the image quality of the sensor. Signal-to-noise measurements are presented and compared with a simple parametric performance model that predicts the sensor performance. The performance model is used to predict the performance of this technology when equipped with cooled detectors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Caulfield, “Spectroscopy,” in Handbook of Optical Holography (Academic, 1979), pp. 587-594.
  2. W. H. Smith and W. V. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389-405(1990).
    [CrossRef]
  3. P. G. Lucey, K. Horton, T. Williams, K. Hinck, C. Budney, J. B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130-141 (1993).
  4. B. Rafert, R. G. Sellar, E. Holbert, J. H. Blatt, D. W. Tyler, S. E. Durham, and Harold D. Newby; “Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations,” Proc. SPIE 2198, 338-349(1994).
  5. W. H. Smith and P. D. Hammer, “Digital array scanned interferometer: sensor and results,” Appl. Opt. 35, 2902-2909(1996).
  6. P. G. Lucey and B. B. Wilcox, “Mini-SMIFTS: an uncooled LWIR hyperspectral sensor,” Proc. SPIE 5159, 275-282, (2004).
  7. S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).
  8. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectroscopy, Vol. 83 of Chemical Analysis (Wiley, 1986).
  9. R. G. Sellar, “The optical engineering of imaging spectrometers based on the Sagnac interferometer,” Ph.D. dissertation (University of Central Florida, 2003).
  10. R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometers,” Appl. Opt. 44, 1614-1624 (2005).
    [CrossRef]
  11. P. W. Kruse, Uncooled Thermal Imaging, Vol. TT51 of Tutorial Texts in Optical Engineering, A. R. Weeks, ed. (SPIE, 2002).
  12. S. H. Silverman, K. R. Blasius, S. J. Ferry, and P. R. Christensen, “Thermal emission imaging system (THEMIS) for Mars 2001 using an uncooled microbolometer array,” in 1999 IEEE Aerospace Conference (IEEE, 1999), Vol. 3, pp. 377-389.
  13. R. G. Sellar and G. D. Boreman, “Limiting aspect ratios of Sagnac interferometers,” Opt. Eng. (Bellingham, Wash.) 42, 3320-3325 (2003).
  14. R. F. Horton, “Optical design for a high Etendue imaging Fourier transform spectrometer” Proc. SPIE 2819, 300-315 (1996).
  15. W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207-216 (1998).
  16. P. J. Minnett and R. G. Sellar, “The High Efficiency Hyperspectral Imager--a new instrument for measurements of the Arctic surface,” presented at 8th Conference on Polar Meteorology and Oceanography (American Meteorological Society, 11 January 2005), poster presentation P1.3.
  17. L. Mertz, Transformations in Optics (Wiley, 1963).
  18. C. L. Bennett, M. Carter, D. Fields, and J. Hernandez, “Imaging Fourier transform spectrometer” Proc. SPIE 1937, 191-200 (1993).

2005

2004

P. G. Lucey and B. B. Wilcox, “Mini-SMIFTS: an uncooled LWIR hyperspectral sensor,” Proc. SPIE 5159, 275-282, (2004).

2003

R. G. Sellar and G. D. Boreman, “Limiting aspect ratios of Sagnac interferometers,” Opt. Eng. (Bellingham, Wash.) 42, 3320-3325 (2003).

2002

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

1998

W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207-216 (1998).

1996

R. F. Horton, “Optical design for a high Etendue imaging Fourier transform spectrometer” Proc. SPIE 2819, 300-315 (1996).

W. H. Smith and P. D. Hammer, “Digital array scanned interferometer: sensor and results,” Appl. Opt. 35, 2902-2909(1996).

1994

B. Rafert, R. G. Sellar, E. Holbert, J. H. Blatt, D. W. Tyler, S. E. Durham, and Harold D. Newby; “Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations,” Proc. SPIE 2198, 338-349(1994).

1993

P. G. Lucey, K. Horton, T. Williams, K. Hinck, C. Budney, J. B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130-141 (1993).

C. L. Bennett, M. Carter, D. Fields, and J. Hernandez, “Imaging Fourier transform spectrometer” Proc. SPIE 1937, 191-200 (1993).

1990

W. H. Smith and W. V. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389-405(1990).
[CrossRef]

Armstrong, P. S.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Arnold, J.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Bennett, C. L.

C. L. Bennett, M. Carter, D. Fields, and J. Hernandez, “Imaging Fourier transform spectrometer” Proc. SPIE 1937, 191-200 (1993).

Blasius, K. R.

S. H. Silverman, K. R. Blasius, S. J. Ferry, and P. R. Christensen, “Thermal emission imaging system (THEMIS) for Mars 2001 using an uncooled microbolometer array,” in 1999 IEEE Aerospace Conference (IEEE, 1999), Vol. 3, pp. 377-389.

Blatt, J. H.

B. Rafert, R. G. Sellar, E. Holbert, J. H. Blatt, D. W. Tyler, S. E. Durham, and Harold D. Newby; “Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations,” Proc. SPIE 2198, 338-349(1994).

Boreman, G. D.

R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometers,” Appl. Opt. 44, 1614-1624 (2005).
[CrossRef]

R. G. Sellar and G. D. Boreman, “Limiting aspect ratios of Sagnac interferometers,” Opt. Eng. (Bellingham, Wash.) 42, 3320-3325 (2003).

Budney, C.

P. G. Lucey, K. Horton, T. Williams, K. Hinck, C. Budney, J. B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130-141 (1993).

Carter, M.

C. L. Bennett, M. Carter, D. Fields, and J. Hernandez, “Imaging Fourier transform spectrometer” Proc. SPIE 1937, 191-200 (1993).

Caudill, T. R.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Caulfield, H. J.

H. J. Caulfield, “Spectroscopy,” in Handbook of Optical Holography (Academic, 1979), pp. 587-594.

Christensen, P. R.

S. H. Silverman, K. R. Blasius, S. J. Ferry, and P. R. Christensen, “Thermal emission imaging system (THEMIS) for Mars 2001 using an uncooled microbolometer array,” in 1999 IEEE Aerospace Conference (IEEE, 1999), Vol. 3, pp. 377-389.

de Haseth, J. A.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectroscopy, Vol. 83 of Chemical Analysis (Wiley, 1986).

Durham, S. E.

B. Rafert, R. G. Sellar, E. Holbert, J. H. Blatt, D. W. Tyler, S. E. Durham, and Harold D. Newby; “Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations,” Proc. SPIE 2198, 338-349(1994).

Edwards, A.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Ferry, S. J.

S. H. Silverman, K. R. Blasius, S. J. Ferry, and P. R. Christensen, “Thermal emission imaging system (THEMIS) for Mars 2001 using an uncooled microbolometer array,” in 1999 IEEE Aerospace Conference (IEEE, 1999), Vol. 3, pp. 377-389.

Fields, D.

C. L. Bennett, M. Carter, D. Fields, and J. Hernandez, “Imaging Fourier transform spectrometer” Proc. SPIE 1937, 191-200 (1993).

Griffiths, P. R.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectroscopy, Vol. 83 of Chemical Analysis (Wiley, 1986).

Hammer, P. D.

Hart, C. L.

W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207-216 (1998).

Hernandez, J.

C. L. Bennett, M. Carter, D. Fields, and J. Hernandez, “Imaging Fourier transform spectrometer” Proc. SPIE 1937, 191-200 (1993).

Hinck, K.

P. G. Lucey, K. Horton, T. Williams, K. Hinck, C. Budney, J. B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130-141 (1993).

Holbert, E.

B. Rafert, R. G. Sellar, E. Holbert, J. H. Blatt, D. W. Tyler, S. E. Durham, and Harold D. Newby; “Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations,” Proc. SPIE 2198, 338-349(1994).

Horton, K.

P. G. Lucey, K. Horton, T. Williams, K. Hinck, C. Budney, J. B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130-141 (1993).

Horton, R. F.

R. F. Horton, “Optical design for a high Etendue imaging Fourier transform spectrometer” Proc. SPIE 2819, 300-315 (1996).

Jones, B. A.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Kouba, E. T.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Kruse, P. W.

P. W. Kruse, Uncooled Thermal Imaging, Vol. TT51 of Tutorial Texts in Optical Engineering, A. R. Weeks, ed. (SPIE, 2002).

Lane, J.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Lockwood, R. B.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Lucey, P. G.

P. G. Lucey and B. B. Wilcox, “Mini-SMIFTS: an uncooled LWIR hyperspectral sensor,” Proc. SPIE 5159, 275-282, (2004).

P. G. Lucey, K. Horton, T. Williams, K. Hinck, C. Budney, J. B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130-141 (1993).

Meigs, A. D.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Mertz, L.

L. Mertz, Transformations in Optics (Wiley, 1963).

Minnett, P. J.

P. J. Minnett and R. G. Sellar, “The High Efficiency Hyperspectral Imager--a new instrument for measurements of the Arctic surface,” presented at 8th Conference on Polar Meteorology and Oceanography (American Meteorological Society, 11 January 2005), poster presentation P1.3.

Newby, Harold D.

B. Rafert, R. G. Sellar, E. Holbert, J. H. Blatt, D. W. Tyler, S. E. Durham, and Harold D. Newby; “Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations,” Proc. SPIE 2198, 338-349(1994).

Osweiler, V.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Otten, L. J.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Quarles, R.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Rafert, B.

B. Rafert, R. G. Sellar, E. Holbert, J. H. Blatt, D. W. Tyler, S. E. Durham, and Harold D. Newby; “Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations,” Proc. SPIE 2198, 338-349(1994).

Rafert, J. B.

W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207-216 (1998).

P. G. Lucey, K. Horton, T. Williams, K. Hinck, C. Budney, J. B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130-141 (1993).

Rohde, C. A.

W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207-216 (1998).

Rusk, T. B.

P. G. Lucey, K. Horton, T. Williams, K. Hinck, C. Budney, J. B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130-141 (1993).

Russell, J.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Schempp, W. V.

W. H. Smith and W. V. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389-405(1990).
[CrossRef]

Sellar, R. G.

R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometers,” Appl. Opt. 44, 1614-1624 (2005).
[CrossRef]

R. G. Sellar and G. D. Boreman, “Limiting aspect ratios of Sagnac interferometers,” Opt. Eng. (Bellingham, Wash.) 42, 3320-3325 (2003).

B. Rafert, R. G. Sellar, E. Holbert, J. H. Blatt, D. W. Tyler, S. E. Durham, and Harold D. Newby; “Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations,” Proc. SPIE 2198, 338-349(1994).

R. G. Sellar, “The optical engineering of imaging spectrometers based on the Sagnac interferometer,” Ph.D. dissertation (University of Central Florida, 2003).

P. J. Minnett and R. G. Sellar, “The High Efficiency Hyperspectral Imager--a new instrument for measurements of the Arctic surface,” presented at 8th Conference on Polar Meteorology and Oceanography (American Meteorological Society, 11 January 2005), poster presentation P1.3.

Silverman, S. H.

S. H. Silverman, K. R. Blasius, S. J. Ferry, and P. R. Christensen, “Thermal emission imaging system (THEMIS) for Mars 2001 using an uncooled microbolometer array,” in 1999 IEEE Aerospace Conference (IEEE, 1999), Vol. 3, pp. 377-389.

Slough, W. J.

W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207-216 (1998).

Smith, W. H.

W. H. Smith and P. D. Hammer, “Digital array scanned interferometer: sensor and results,” Appl. Opt. 35, 2902-2909(1996).

W. H. Smith and W. V. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389-405(1990).
[CrossRef]

Tyler, D. W.

B. Rafert, R. G. Sellar, E. Holbert, J. H. Blatt, D. W. Tyler, S. E. Durham, and Harold D. Newby; “Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations,” Proc. SPIE 2198, 338-349(1994).

Wilcox, B. B.

P. G. Lucey and B. B. Wilcox, “Mini-SMIFTS: an uncooled LWIR hyperspectral sensor,” Proc. SPIE 5159, 275-282, (2004).

Williams, T.

P. G. Lucey, K. Horton, T. Williams, K. Hinck, C. Budney, J. B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130-141 (1993).

Yarbrough, S.

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

Appl. Opt.

Exp. Astron.

W. H. Smith and W. V. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389-405(1990).
[CrossRef]

Opt. Eng. (Bellingham, Wash.)

R. G. Sellar and G. D. Boreman, “Limiting aspect ratios of Sagnac interferometers,” Opt. Eng. (Bellingham, Wash.) 42, 3320-3325 (2003).

Proc. SPIE

R. F. Horton, “Optical design for a high Etendue imaging Fourier transform spectrometer” Proc. SPIE 2819, 300-315 (1996).

W. J. Slough, J. B. Rafert, C. A. Rohde, and C. L. Hart, “THRIFTI: Tomographic hyperspectral remote imaging Fourier transform interferometer,” Proc. SPIE 3393, 207-216 (1998).

C. L. Bennett, M. Carter, D. Fields, and J. Hernandez, “Imaging Fourier transform spectrometer” Proc. SPIE 1937, 191-200 (1993).

P. G. Lucey, K. Horton, T. Williams, K. Hinck, C. Budney, J. B. Rafert, and T. B. Rusk, “SMIFTS: a cryogenically cooled spatially modulated imaging infrared interferometer spectrometer,” Proc. SPIE 1937, 130-141 (1993).

B. Rafert, R. G. Sellar, E. Holbert, J. H. Blatt, D. W. Tyler, S. E. Durham, and Harold D. Newby; “Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations,” Proc. SPIE 2198, 338-349(1994).

P. G. Lucey and B. B. Wilcox, “Mini-SMIFTS: an uncooled LWIR hyperspectral sensor,” Proc. SPIE 5159, 275-282, (2004).

Other

S. Yarbrough, T. R. Caudill, E. T. Kouba, V. Osweiler, J. Arnold, R. Quarles, J. Russell, L. J. Otten III, B. A. Jones, A. Edwards, J. Lane, A. D. Meigs, R. B. Lockwood, and P. S. Armstrong, “MightySat II.1 hyperspectral imager: summary of on-orbit performance,” Proc. SPIE 4480, 186-197 (2002).

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectroscopy, Vol. 83 of Chemical Analysis (Wiley, 1986).

R. G. Sellar, “The optical engineering of imaging spectrometers based on the Sagnac interferometer,” Ph.D. dissertation (University of Central Florida, 2003).

P. W. Kruse, Uncooled Thermal Imaging, Vol. TT51 of Tutorial Texts in Optical Engineering, A. R. Weeks, ed. (SPIE, 2002).

S. H. Silverman, K. R. Blasius, S. J. Ferry, and P. R. Christensen, “Thermal emission imaging system (THEMIS) for Mars 2001 using an uncooled microbolometer array,” in 1999 IEEE Aerospace Conference (IEEE, 1999), Vol. 3, pp. 377-389.

H. J. Caulfield, “Spectroscopy,” in Handbook of Optical Holography (Academic, 1979), pp. 587-594.

P. J. Minnett and R. G. Sellar, “The High Efficiency Hyperspectral Imager--a new instrument for measurements of the Arctic surface,” presented at 8th Conference on Polar Meteorology and Oceanography (American Meteorological Society, 11 January 2005), poster presentation P1.3.

L. Mertz, Transformations in Optics (Wiley, 1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the Sagnac interferometer layout. Top, in the interferometer, the input beam is divided into transmitted (bold) and reflected (fine) paths. A slight rotation shears the beams, as it has a larger effect on the reflected path. Bottom, the scene is viewed through the interferometer with a camera.

Fig. 2
Fig. 2

Photograph of the Sagnac LWIR HSI sensor. The cover has been removed to reveal the interferometer cube (black object toward the bottom) and the camera (dark cylinder toward the top). For scale, the sensor is 13 in. (33 cm) high.

Fig. 3
Fig. 3

Top, image of raw airborne data over suburban Honolulu obtained with the interferometer. Bottom, image corrected by using frame-to-frame correlation.

Fig. 4
Fig. 4

Top, slice through the interference cube. The x axis is the frame and the y axis is the cross-track position. The wavy lines are the track of scene elements while the aircraft undergoes pitch and velocity variations. Bottom, the same data after resampling to a constant apparent time sampling.

Fig. 5
Fig. 5

Top, brightness temperature spectra of a silicate panel showing silicate reststrahlen obtained at a range of 30 m using both the Sagnac interferometer (line with pluses) and the University of Hawaii adaptive holographic interferometry LWIR HSI system (solid line). Bottom, spectra of a marble panel showing absorption due to the carbonate ion. In the overlap region ( 9 11.5 μ m ) the two sensors return very similar signatures. The signatures were obtained at slightly different times; so temperatures will differ because of changing illumination.

Fig. 6
Fig. 6

Top, multispectral (9, 10, 11 μ m ) image from the Sagnac data shown in Fig. 5. The yellow panels are carbonates, the blue panels are silicates. Bottom, airborne IR multispectral IR data of suburban Honolulu. Blue rooftops have clay tiles showing silicate reststrahlen features.

Fig. 7
Fig. 7

Model and measured SNR ratios for the Sagnac LWIR HSI. The smooth curve on top is the model, the irregular curve is the measurement. Deviations of the model and measurement are consistent with the unaccounted beam splitter efficiency shown in Fig. 8.

Fig. 8
Fig. 8

Top, reflectance (solid) and transmission (dotted) of the beam splitter used in the sensor. Bottom, modulation efficiency of the sensor. The maximum efficiency is at the 50 50 transmission point; deviations from 50 50 impose inefficiency.

Fig. 9
Fig. 9

Model SNR for an uncooled Sagnac LWIR HSI sensor equipped with a deep well, cooled IR focal plane array. The maximum signal on the array is 10 × 10 6 electrons in this model.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

SNR interferometer = S λ N R 2 + λ S λ ,
SNR dispersive = S λ R 2 + S λ ,
SNR TDI = S λ N R 2 + S λ .
SNR interferometer , read = N S λ R ,
SNR dispersive , read = S λ / R ,
SNR TDI , read = N S λ R ,
SNR TDI , read = N M S λ R .
NEDT = V N [ 4 ( f -number ) 2 + 1 ] x τ 0 A D R ( Δ P / Δ T ) λ 1 λ 2 ,
NEP = V N / R ;
NEP = NEDT τ 0 A D ( Δ P / Δ T ) λ 1 λ 2 4 ( f -number ) 2 + 1 ,
P σ = L σ Δ σ A D τ i ,
SNR interferometer , ph , sat = FW N M FW = N M FW ,
SNR dispersive , ph , sat = FW FW = FW ,
SNR TDL , ph , sat = N M = FW ,

Metrics