Abstract

The authors use a fiber sensor integrated monitor (FSIM) as a fully functioning system to characterize the temporal response of a surface-relief fiber Bragg grating (SR-FBG) to temperature heating above 1000°C. The SR-FBG is shown to have a rise time of about 77ms for heating and a fall time of about 143ms for cooling. The FSIM also provides full spectral scans at high speed that can be used to gain further insights into the temperature dynamics of a given system.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. van Wyk, P. L. Swart, and A. A. Chtcherbakov, “Fibre Bragg grating gas temperature sensor with fast response,” Meas. Sci. Technol. 17, 1113-1117 (2006).
    [CrossRef]
  2. B. W. Asay, S. F. Son, P. M. Dickson, L. B. Smilowitz, and B. F. Henson, “An investigation of the dynamic response of thermocouples in inert and reacting condensed phase energetic materials,” Propellants, Explos., Pyrotech. 30, 199-208(2005).
    [CrossRef]
  3. T. Ergodan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
    [CrossRef]
  4. T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17, 1926-1928 (2005).
    [CrossRef]
  5. K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Surface-relief fiber Bragg gratings for sensing applications,” Appl. Opt. 45, 1669-1675(2006).
    [CrossRef] [PubMed]
  6. K. Sohn and J. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photonics Technol. Lett. 14, 1575-1577 (2002).
    [CrossRef]
  7. W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
    [CrossRef]
  8. R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139-2144 (2007).
    [CrossRef] [PubMed]
  9. M. A. Jensen and R. H. Selfridge, “Analysis of etching induced birefringence changes in elliptic core fibers,” Appl. Opt. 31, 2011-2016 (1992).
    [CrossRef] [PubMed]
  10. S. W. Lloyd, J. A. Newman, D. R. Wilding, R. H. Selfridge, and S. M. Schultz, “Compact optical fiber sensor smart node,” Rev. Sci. Instrum. 78, 035108 (2007).
    [CrossRef] [PubMed]
  11. W. Kunzler, J. Newmann, D. Wilding, Z. Zhu, T. Lowder, R. Selfridge, and S. Schultz, “Advanced FBG sensing through rapid spectral interrogation,” Proc. SPIE 6933, 69330D(2008).
    [CrossRef]
  12. A. H. Rose, “Annealing optical fiber: applications and properties,” Am. Ceram. Soc. Bull. 79, 40-43 (2000).
  13. G. M. H. Flockhart, R. R. J. Maier, J. S. Barton, W. N. MacPherson, J. D. C. Jones, K. E. Chisholm, L. Zhang, I. Benndion, I. Read, and P. D. Foote, “Quadratic behavior of fiber Bragg grating temperature coefficients,” Appl. Opt. 43, 2744-2751 (2004).
    [CrossRef] [PubMed]
  14. S. H. Cho, J. Park, B. Kim, and M. H. Kang, “Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion,” ETRI J. 26, 371-374 (2004).
    [CrossRef]

2008 (1)

W. Kunzler, J. Newmann, D. Wilding, Z. Zhu, T. Lowder, R. Selfridge, and S. Schultz, “Advanced FBG sensing through rapid spectral interrogation,” Proc. SPIE 6933, 69330D(2008).
[CrossRef]

2007 (2)

R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139-2144 (2007).
[CrossRef] [PubMed]

S. W. Lloyd, J. A. Newman, D. R. Wilding, R. H. Selfridge, and S. M. Schultz, “Compact optical fiber sensor smart node,” Rev. Sci. Instrum. 78, 035108 (2007).
[CrossRef] [PubMed]

2006 (2)

A. J. van Wyk, P. L. Swart, and A. A. Chtcherbakov, “Fibre Bragg grating gas temperature sensor with fast response,” Meas. Sci. Technol. 17, 1113-1117 (2006).
[CrossRef]

K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Surface-relief fiber Bragg gratings for sensing applications,” Appl. Opt. 45, 1669-1675(2006).
[CrossRef] [PubMed]

2005 (2)

B. W. Asay, S. F. Son, P. M. Dickson, L. B. Smilowitz, and B. F. Henson, “An investigation of the dynamic response of thermocouples in inert and reacting condensed phase energetic materials,” Propellants, Explos., Pyrotech. 30, 199-208(2005).
[CrossRef]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

2004 (2)

2002 (1)

K. Sohn and J. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photonics Technol. Lett. 14, 1575-1577 (2002).
[CrossRef]

2001 (1)

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

2000 (1)

A. H. Rose, “Annealing optical fiber: applications and properties,” Am. Ceram. Soc. Bull. 79, 40-43 (2000).

1994 (1)

T. Ergodan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

1992 (1)

Asay, B. W.

B. W. Asay, S. F. Son, P. M. Dickson, L. B. Smilowitz, and B. F. Henson, “An investigation of the dynamic response of thermocouples in inert and reacting condensed phase energetic materials,” Propellants, Explos., Pyrotech. 30, 199-208(2005).
[CrossRef]

Barton, J. S.

Benndion, I.

Chisholm, K. E.

Cho, S. H.

S. H. Cho, J. Park, B. Kim, and M. H. Kang, “Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion,” ETRI J. 26, 371-374 (2004).
[CrossRef]

Chtcherbakov, A. A.

A. J. van Wyk, P. L. Swart, and A. A. Chtcherbakov, “Fibre Bragg grating gas temperature sensor with fast response,” Meas. Sci. Technol. 17, 1113-1117 (2006).
[CrossRef]

Dickson, P. M.

B. W. Asay, S. F. Son, P. M. Dickson, L. B. Smilowitz, and B. F. Henson, “An investigation of the dynamic response of thermocouples in inert and reacting condensed phase energetic materials,” Propellants, Explos., Pyrotech. 30, 199-208(2005).
[CrossRef]

Ergodan, T.

T. Ergodan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Flockhart, G. M. H.

Foote, P. D.

Gibson, R.

Hawkins, A. R.

K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Surface-relief fiber Bragg gratings for sensing applications,” Appl. Opt. 45, 1669-1675(2006).
[CrossRef] [PubMed]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

Henson, B. F.

B. W. Asay, S. F. Son, P. M. Dickson, L. B. Smilowitz, and B. F. Henson, “An investigation of the dynamic response of thermocouples in inert and reacting condensed phase energetic materials,” Propellants, Explos., Pyrotech. 30, 199-208(2005).
[CrossRef]

Ipson, B. L.

K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Surface-relief fiber Bragg gratings for sensing applications,” Appl. Opt. 45, 1669-1675(2006).
[CrossRef] [PubMed]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

Jensen, M. A.

Jones, J. D. C.

Jung, W.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

Kang, M. H.

S. H. Cho, J. Park, B. Kim, and M. H. Kang, “Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion,” ETRI J. 26, 371-374 (2004).
[CrossRef]

Kang, S.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

Kim, B.

S. H. Cho, J. Park, B. Kim, and M. H. Kang, “Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion,” ETRI J. 26, 371-374 (2004).
[CrossRef]

Kim, E.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

Kim, K.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

Kim, S.

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

Kunzler, W.

W. Kunzler, J. Newmann, D. Wilding, Z. Zhu, T. Lowder, R. Selfridge, and S. Schultz, “Advanced FBG sensing through rapid spectral interrogation,” Proc. SPIE 6933, 69330D(2008).
[CrossRef]

Kvavle, J.

Lemaire, P. J.

T. Ergodan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Lloyd, S. W.

S. W. Lloyd, J. A. Newman, D. R. Wilding, R. H. Selfridge, and S. M. Schultz, “Compact optical fiber sensor smart node,” Rev. Sci. Instrum. 78, 035108 (2007).
[CrossRef] [PubMed]

Lowder, T.

W. Kunzler, J. Newmann, D. Wilding, Z. Zhu, T. Lowder, R. Selfridge, and S. Schultz, “Advanced FBG sensing through rapid spectral interrogation,” Proc. SPIE 6933, 69330D(2008).
[CrossRef]

Lowder, T. L.

K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Surface-relief fiber Bragg gratings for sensing applications,” Appl. Opt. 45, 1669-1675(2006).
[CrossRef] [PubMed]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

MacPherson, W. N.

Maier, R. R. J.

Mizrahi, V.

T. Ergodan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Monroe, D.

T. Ergodan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Newman, J. A.

S. W. Lloyd, J. A. Newman, D. R. Wilding, R. H. Selfridge, and S. M. Schultz, “Compact optical fiber sensor smart node,” Rev. Sci. Instrum. 78, 035108 (2007).
[CrossRef] [PubMed]

Newmann, J.

W. Kunzler, J. Newmann, D. Wilding, Z. Zhu, T. Lowder, R. Selfridge, and S. Schultz, “Advanced FBG sensing through rapid spectral interrogation,” Proc. SPIE 6933, 69330D(2008).
[CrossRef]

Park, J.

S. H. Cho, J. Park, B. Kim, and M. H. Kang, “Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion,” ETRI J. 26, 371-374 (2004).
[CrossRef]

Read, I.

Rose, A. H.

A. H. Rose, “Annealing optical fiber: applications and properties,” Am. Ceram. Soc. Bull. 79, 40-43 (2000).

Schultz, S.

W. Kunzler, J. Newmann, D. Wilding, Z. Zhu, T. Lowder, R. Selfridge, and S. Schultz, “Advanced FBG sensing through rapid spectral interrogation,” Proc. SPIE 6933, 69330D(2008).
[CrossRef]

R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139-2144 (2007).
[CrossRef] [PubMed]

Schultz, S. M.

S. W. Lloyd, J. A. Newman, D. R. Wilding, R. H. Selfridge, and S. M. Schultz, “Compact optical fiber sensor smart node,” Rev. Sci. Instrum. 78, 035108 (2007).
[CrossRef] [PubMed]

K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Surface-relief fiber Bragg gratings for sensing applications,” Appl. Opt. 45, 1669-1675(2006).
[CrossRef] [PubMed]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

Selfridge, R.

W. Kunzler, J. Newmann, D. Wilding, Z. Zhu, T. Lowder, R. Selfridge, and S. Schultz, “Advanced FBG sensing through rapid spectral interrogation,” Proc. SPIE 6933, 69330D(2008).
[CrossRef]

R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139-2144 (2007).
[CrossRef] [PubMed]

Selfridge, R. H.

S. W. Lloyd, J. A. Newman, D. R. Wilding, R. H. Selfridge, and S. M. Schultz, “Compact optical fiber sensor smart node,” Rev. Sci. Instrum. 78, 035108 (2007).
[CrossRef] [PubMed]

K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Surface-relief fiber Bragg gratings for sensing applications,” Appl. Opt. 45, 1669-1675(2006).
[CrossRef] [PubMed]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

M. A. Jensen and R. H. Selfridge, “Analysis of etching induced birefringence changes in elliptic core fibers,” Appl. Opt. 31, 2011-2016 (1992).
[CrossRef] [PubMed]

Smilowitz, L. B.

B. W. Asay, S. F. Son, P. M. Dickson, L. B. Smilowitz, and B. F. Henson, “An investigation of the dynamic response of thermocouples in inert and reacting condensed phase energetic materials,” Propellants, Explos., Pyrotech. 30, 199-208(2005).
[CrossRef]

Smith, K. H.

K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Surface-relief fiber Bragg gratings for sensing applications,” Appl. Opt. 45, 1669-1675(2006).
[CrossRef] [PubMed]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

Sohn, K.

K. Sohn and J. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photonics Technol. Lett. 14, 1575-1577 (2002).
[CrossRef]

Son, S. F.

B. W. Asay, S. F. Son, P. M. Dickson, L. B. Smilowitz, and B. F. Henson, “An investigation of the dynamic response of thermocouples in inert and reacting condensed phase energetic materials,” Propellants, Explos., Pyrotech. 30, 199-208(2005).
[CrossRef]

Song, J.

K. Sohn and J. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photonics Technol. Lett. 14, 1575-1577 (2002).
[CrossRef]

Swart, P. L.

A. J. van Wyk, P. L. Swart, and A. A. Chtcherbakov, “Fibre Bragg grating gas temperature sensor with fast response,” Meas. Sci. Technol. 17, 1113-1117 (2006).
[CrossRef]

van Wyk, A. J.

A. J. van Wyk, P. L. Swart, and A. A. Chtcherbakov, “Fibre Bragg grating gas temperature sensor with fast response,” Meas. Sci. Technol. 17, 1113-1117 (2006).
[CrossRef]

Wilding, D.

W. Kunzler, J. Newmann, D. Wilding, Z. Zhu, T. Lowder, R. Selfridge, and S. Schultz, “Advanced FBG sensing through rapid spectral interrogation,” Proc. SPIE 6933, 69330D(2008).
[CrossRef]

Wilding, D. R.

S. W. Lloyd, J. A. Newman, D. R. Wilding, R. H. Selfridge, and S. M. Schultz, “Compact optical fiber sensor smart node,” Rev. Sci. Instrum. 78, 035108 (2007).
[CrossRef] [PubMed]

Zhang, L.

Zhu, Z.

W. Kunzler, J. Newmann, D. Wilding, Z. Zhu, T. Lowder, R. Selfridge, and S. Schultz, “Advanced FBG sensing through rapid spectral interrogation,” Proc. SPIE 6933, 69330D(2008).
[CrossRef]

Am. Ceram. Soc. Bull. (1)

A. H. Rose, “Annealing optical fiber: applications and properties,” Am. Ceram. Soc. Bull. 79, 40-43 (2000).

Appl. Opt. (3)

ETRI J. (1)

S. H. Cho, J. Park, B. Kim, and M. H. Kang, “Fabrication and analysis of chirped fiber Bragg gratings by thermal diffusion,” ETRI J. 26, 371-374 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

K. Sohn and J. Song, “Thermooptically tunable side-polished fiber comb filter and its application,” IEEE Photonics Technol. Lett. 14, 1575-1577 (2002).
[CrossRef]

W. Jung, S. Kim, K. Kim, E. Kim, and S. Kang, “High-sensitivity temperature sensor using a side-polished single mode fiber covered with the polymer planar waveguide,” IEEE Photonics Technol. Lett. 13, 1209-1211 (2001).
[CrossRef]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

J. Appl. Phys. (1)

T. Ergodan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Meas. Sci. Technol. (1)

A. J. van Wyk, P. L. Swart, and A. A. Chtcherbakov, “Fibre Bragg grating gas temperature sensor with fast response,” Meas. Sci. Technol. 17, 1113-1117 (2006).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

W. Kunzler, J. Newmann, D. Wilding, Z. Zhu, T. Lowder, R. Selfridge, and S. Schultz, “Advanced FBG sensing through rapid spectral interrogation,” Proc. SPIE 6933, 69330D(2008).
[CrossRef]

Propellants, Explos., Pyrotech. (1)

B. W. Asay, S. F. Son, P. M. Dickson, L. B. Smilowitz, and B. F. Henson, “An investigation of the dynamic response of thermocouples in inert and reacting condensed phase energetic materials,” Propellants, Explos., Pyrotech. 30, 199-208(2005).
[CrossRef]

Rev. Sci. Instrum. (1)

S. W. Lloyd, J. A. Newman, D. R. Wilding, R. H. Selfridge, and S. M. Schultz, “Compact optical fiber sensor smart node,” Rev. Sci. Instrum. 78, 035108 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) SEM image of the gratings etched into the flat side of the D-fiber. (b) Reflection spectrum of a SR-FBG as recorded by the FSIM.

Fig. 2
Fig. 2

(a) Block diagram of the basic FSIM operation. (b) Block diagram of the optical filter board.

Fig. 3
Fig. 3

Graph showing the change in the peak Bragg wavelength versus temperature during the grating calibration. The dots are the recorded data, and the solid line is the quadratic fit.

Fig. 4
Fig. 4

Diagram of the experimental setup to measure the temporal thermal response of the SR-FBG.

Fig. 5
Fig. 5

Graph showing the difference in heating times when the laser radiation is incident on the flat side or rounded side of the D-shaped optical fiber.

Fig. 6
Fig. 6

Graph showing different heating curves for the SR-FBG as a function of time. The different curves correspond to different output powers from the laser and thus different final temperatures. The time constant is τ = 77 ± 3 ms .

Fig. 7
Fig. 7

Graph showing different cooling curves for the SR-FBG as a function of time. The time constant is τ = 143 ± 10 ms .

Fig. 8
Fig. 8

Graph showing the FWHM of the Bragg reflection as a function of temperature during one of the heating experiments. The inset shows the location of the FWHM on the reflection spectrum.

Metrics