Abstract

Integral imaging (InIm) is a highly promising technique for the delivery of three-dimensional (3D) image content. During capturing, different views of an object are recorded as an array of elemental images (EIs), which form the integral image. High-resolution InIm requires sensors with increased resolution and produces huge amounts of highly correlated data. In an efficient encoding scheme for InIm compression both inter-EI and intra-EI correlations have to be properly exploited. We present an EI traversal scheme that maximizes the performance of InIm encoders by properly rearranging EIs to increase the intra-EI correlation of jointly coded EIs. This technique can be used to augment performance of both InIm specific and properly adapted general use encoder setups, used in InIm compression. An objective quality metric is also introduced for evaluating the effects of different traversal schemes on the encoder performance.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Pastoor and M. Wöpking, “3-D displays: a review of current technologies,” Displays 17(2), 100-110 (1997).
    [CrossRef]
  2. M. Halle, “Autostereoscopic displays and computer graphics,” Comput. Graph. 31(2), 58-62 (1997).
    [CrossRef]
  3. J.-Y. Son and B. Javidi, “Three-dimensional imaging methods based on multiview images,” J. Display Technol. 1, 125-140 (2005).
    [CrossRef]
  4. G. Lippmann, “La Photographie integrale,” C. R. Acad. Sci. 146, 446-455 (1908).
  5. J. S. Jang and B. Javidi, “Formation of orthoscopic three dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42, 1869-1870 (2003).
    [CrossRef]
  6. J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, “Three-dimensional display scheme based on integral imaging with three-dimensional information processing,” Opt. Express 12, 6020-6032 (2004).
    [CrossRef] [PubMed]
  7. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).
  8. N. P. Sgouros, D. P. Chaikalis, P. G. Papageorgas, and M. S. Sangriotis, “Omnidirectional integral photography images compression using the 3D-DCT,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DTuA2.
    [PubMed]
  9. R. Zaharia, A. Aggoun, and M. McCormick, “Adaptive 3D-DCT compression algorithm for continuous parallax 3D integral imaging,” Signal Process. Image Commun. 17, 231-242 (2002).
    [CrossRef]
  10. N. P. Sgouros, A. G. Andreou, M. S. Sangriotis, P. G. Papageorgas, D. M. Maroulis , and N. G. Theofanous, “Compression of IP images for autostereoscopic 3D imaging applications,” in Proceedings of 3rd International Symposium on Image and Signal Processing and Analysis, S.Loncaric, A. Neri, and H. Babic, ed. (IEEE, 2003), pp. 223-227.
  11. S. Yeom, A. Stern, and B. Javidi, “Compression of 3D color integral images,” Opt. Express 12, 1632-1642 (2004).
    [CrossRef] [PubMed]
  12. H. Sagan, Space-Filling Curves (Springer-Verlag, 1974).
  13. C. Gotsman and M. Lindenbaum, “On the metric properties of discrete space filling curves,” IEEE Trans. Image Process. 5, 794-797 (1996).
    [CrossRef]
  14. J. Zhang, S.-I. Kamata, and Y. Ueshige, “A pseudo-Hilbert scan for arbitrarily-sized arrays,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A, 682-690 (2007).
    [CrossRef]
  15. S. Kamata and Y. Bandoh, “An address generator of a pseudo-Hilbert scan in a rectangle region,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 1997), pp. 707-710.
    [CrossRef]
  16. K.-L. Chung and L.-C. Chang, “A novel two-phase Hilbert-scan-based search algorithm for block motion estimation using CTF data structure,” Pattern Recogn. 37, 1451-1458 (2004).
    [CrossRef]
  17. B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of the clustering properties of the Hilbert space-filling curve,” IEEE Trans. Knowl. Data Eng. 13, 124-141 (2001).
    [CrossRef]
  18. A. Lempel and J. Ziv, “Compression of two-dimensional data,” IEEE Trans. Inf. Theory IT-32, 2-8 (1986).
  19. D. Salomon, Data Compression, the Complete Reference, 3rd ed. (Springer, 2004).
  20. B. Furht, J. Greenberg, and R. Westwater, Motion Estimation Algorithms for Video Compression (Kluwer Academic, 1997).
    [CrossRef]
  21. POV-Ray: The Persistence of Vision Raytracer, www.povray.org.
  22. S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Physical modelling of microlens array setup for use in computer generated IP,” in Electronic Imaging 2005 (IS&T, SPIE, 2005), paper 5664A-75.
  23. S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray traced model of the capturing optics,” J. Electron. Imaging 15, 043007 (2006).
    [CrossRef]
  24. G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, “Enhanced reconstruction of 3D shape and texture from integral photography images,” Appl. Opt. 46, 5311-5320 (2007).
    [CrossRef] [PubMed]
  25. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
    [CrossRef]
  26. A. Stoica, C. Vertan, and C. Fernandez-Maloigne, “Objective and subjective color image quality evaluation for JPEG 2000 compressed images,” in Proceedings of IEEE International Symposium on Signals, Circuits and Systems (IEEE, 2003), pp. 137-140.

2007 (2)

J. Zhang, S.-I. Kamata, and Y. Ueshige, “A pseudo-Hilbert scan for arbitrarily-sized arrays,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A, 682-690 (2007).
[CrossRef]

G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, “Enhanced reconstruction of 3D shape and texture from integral photography images,” Appl. Opt. 46, 5311-5320 (2007).
[CrossRef] [PubMed]

2006 (1)

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray traced model of the capturing optics,” J. Electron. Imaging 15, 043007 (2006).
[CrossRef]

2005 (1)

2004 (4)

J.-H. Park, Y. Kim, J. Kim, S.-W. Min, and B. Lee, “Three-dimensional display scheme based on integral imaging with three-dimensional information processing,” Opt. Express 12, 6020-6032 (2004).
[CrossRef] [PubMed]

S. Yeom, A. Stern, and B. Javidi, “Compression of 3D color integral images,” Opt. Express 12, 1632-1642 (2004).
[CrossRef] [PubMed]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
[CrossRef]

K.-L. Chung and L.-C. Chang, “A novel two-phase Hilbert-scan-based search algorithm for block motion estimation using CTF data structure,” Pattern Recogn. 37, 1451-1458 (2004).
[CrossRef]

2003 (1)

J. S. Jang and B. Javidi, “Formation of orthoscopic three dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42, 1869-1870 (2003).
[CrossRef]

2002 (1)

R. Zaharia, A. Aggoun, and M. McCormick, “Adaptive 3D-DCT compression algorithm for continuous parallax 3D integral imaging,” Signal Process. Image Commun. 17, 231-242 (2002).
[CrossRef]

2001 (1)

B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of the clustering properties of the Hilbert space-filling curve,” IEEE Trans. Knowl. Data Eng. 13, 124-141 (2001).
[CrossRef]

1997 (2)

S. Pastoor and M. Wöpking, “3-D displays: a review of current technologies,” Displays 17(2), 100-110 (1997).
[CrossRef]

M. Halle, “Autostereoscopic displays and computer graphics,” Comput. Graph. 31(2), 58-62 (1997).
[CrossRef]

1996 (1)

C. Gotsman and M. Lindenbaum, “On the metric properties of discrete space filling curves,” IEEE Trans. Image Process. 5, 794-797 (1996).
[CrossRef]

1986 (1)

A. Lempel and J. Ziv, “Compression of two-dimensional data,” IEEE Trans. Inf. Theory IT-32, 2-8 (1986).

1908 (1)

G. Lippmann, “La Photographie integrale,” C. R. Acad. Sci. 146, 446-455 (1908).

Aggoun, A.

R. Zaharia, A. Aggoun, and M. McCormick, “Adaptive 3D-DCT compression algorithm for continuous parallax 3D integral imaging,” Signal Process. Image Commun. 17, 231-242 (2002).
[CrossRef]

Andreou, A. G.

N. P. Sgouros, A. G. Andreou, M. S. Sangriotis, P. G. Papageorgas, D. M. Maroulis , and N. G. Theofanous, “Compression of IP images for autostereoscopic 3D imaging applications,” in Proceedings of 3rd International Symposium on Image and Signal Processing and Analysis, S.Loncaric, A. Neri, and H. Babic, ed. (IEEE, 2003), pp. 223-227.

Athineos, S.

G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, “Enhanced reconstruction of 3D shape and texture from integral photography images,” Appl. Opt. 46, 5311-5320 (2007).
[CrossRef] [PubMed]

Athineos, S. S.

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray traced model of the capturing optics,” J. Electron. Imaging 15, 043007 (2006).
[CrossRef]

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Physical modelling of microlens array setup for use in computer generated IP,” in Electronic Imaging 2005 (IS&T, SPIE, 2005), paper 5664A-75.

Bandoh, Y.

S. Kamata and Y. Bandoh, “An address generator of a pseudo-Hilbert scan in a rectangle region,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 1997), pp. 707-710.
[CrossRef]

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
[CrossRef]

Chaikalis, D. P.

N. P. Sgouros, D. P. Chaikalis, P. G. Papageorgas, and M. S. Sangriotis, “Omnidirectional integral photography images compression using the 3D-DCT,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DTuA2.
[PubMed]

Chang, L.-C.

K.-L. Chung and L.-C. Chang, “A novel two-phase Hilbert-scan-based search algorithm for block motion estimation using CTF data structure,” Pattern Recogn. 37, 1451-1458 (2004).
[CrossRef]

Chung, K.-L.

K.-L. Chung and L.-C. Chang, “A novel two-phase Hilbert-scan-based search algorithm for block motion estimation using CTF data structure,” Pattern Recogn. 37, 1451-1458 (2004).
[CrossRef]

Faloutsos, C.

B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of the clustering properties of the Hilbert space-filling curve,” IEEE Trans. Knowl. Data Eng. 13, 124-141 (2001).
[CrossRef]

Fernandez-Maloigne, C.

A. Stoica, C. Vertan, and C. Fernandez-Maloigne, “Objective and subjective color image quality evaluation for JPEG 2000 compressed images,” in Proceedings of IEEE International Symposium on Signals, Circuits and Systems (IEEE, 2003), pp. 137-140.

Furht, B.

B. Furht, J. Greenberg, and R. Westwater, Motion Estimation Algorithms for Video Compression (Kluwer Academic, 1997).
[CrossRef]

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).

Gotsman, C.

C. Gotsman and M. Lindenbaum, “On the metric properties of discrete space filling curves,” IEEE Trans. Image Process. 5, 794-797 (1996).
[CrossRef]

Greenberg, J.

B. Furht, J. Greenberg, and R. Westwater, Motion Estimation Algorithms for Video Compression (Kluwer Academic, 1997).
[CrossRef]

Halle, M.

M. Halle, “Autostereoscopic displays and computer graphics,” Comput. Graph. 31(2), 58-62 (1997).
[CrossRef]

Jagadish, H. V.

B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of the clustering properties of the Hilbert space-filling curve,” IEEE Trans. Knowl. Data Eng. 13, 124-141 (2001).
[CrossRef]

Jang, J. S.

J. S. Jang and B. Javidi, “Formation of orthoscopic three dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42, 1869-1870 (2003).
[CrossRef]

Javidi, B.

Kamata, S.

S. Kamata and Y. Bandoh, “An address generator of a pseudo-Hilbert scan in a rectangle region,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 1997), pp. 707-710.
[CrossRef]

Kamata, S.-I.

J. Zhang, S.-I. Kamata, and Y. Ueshige, “A pseudo-Hilbert scan for arbitrarily-sized arrays,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A, 682-690 (2007).
[CrossRef]

Kim, J.

Kim, Y.

Lee, B.

Lempel, A.

A. Lempel and J. Ziv, “Compression of two-dimensional data,” IEEE Trans. Inf. Theory IT-32, 2-8 (1986).

Lindenbaum, M.

C. Gotsman and M. Lindenbaum, “On the metric properties of discrete space filling curves,” IEEE Trans. Image Process. 5, 794-797 (1996).
[CrossRef]

Lippmann, G.

G. Lippmann, “La Photographie integrale,” C. R. Acad. Sci. 146, 446-455 (1908).

Maroulis, D. E.

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray traced model of the capturing optics,” J. Electron. Imaging 15, 043007 (2006).
[CrossRef]

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Physical modelling of microlens array setup for use in computer generated IP,” in Electronic Imaging 2005 (IS&T, SPIE, 2005), paper 5664A-75.

Maroulis, D. M.

N. P. Sgouros, A. G. Andreou, M. S. Sangriotis, P. G. Papageorgas, D. M. Maroulis , and N. G. Theofanous, “Compression of IP images for autostereoscopic 3D imaging applications,” in Proceedings of 3rd International Symposium on Image and Signal Processing and Analysis, S.Loncaric, A. Neri, and H. Babic, ed. (IEEE, 2003), pp. 223-227.

McCormick, M.

R. Zaharia, A. Aggoun, and M. McCormick, “Adaptive 3D-DCT compression algorithm for continuous parallax 3D integral imaging,” Signal Process. Image Commun. 17, 231-242 (2002).
[CrossRef]

Min, S.-W.

Moon, B.

B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of the clustering properties of the Hilbert space-filling curve,” IEEE Trans. Knowl. Data Eng. 13, 124-141 (2001).
[CrossRef]

Papageorgas, P. G.

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray traced model of the capturing optics,” J. Electron. Imaging 15, 043007 (2006).
[CrossRef]

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Physical modelling of microlens array setup for use in computer generated IP,” in Electronic Imaging 2005 (IS&T, SPIE, 2005), paper 5664A-75.

N. P. Sgouros, D. P. Chaikalis, P. G. Papageorgas, and M. S. Sangriotis, “Omnidirectional integral photography images compression using the 3D-DCT,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DTuA2.
[PubMed]

N. P. Sgouros, A. G. Andreou, M. S. Sangriotis, P. G. Papageorgas, D. M. Maroulis , and N. G. Theofanous, “Compression of IP images for autostereoscopic 3D imaging applications,” in Proceedings of 3rd International Symposium on Image and Signal Processing and Analysis, S.Loncaric, A. Neri, and H. Babic, ed. (IEEE, 2003), pp. 223-227.

Park, J.-H.

Passalis, G.

G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, “Enhanced reconstruction of 3D shape and texture from integral photography images,” Appl. Opt. 46, 5311-5320 (2007).
[CrossRef] [PubMed]

Pastoor, S.

S. Pastoor and M. Wöpking, “3-D displays: a review of current technologies,” Displays 17(2), 100-110 (1997).
[CrossRef]

Sagan, H.

H. Sagan, Space-Filling Curves (Springer-Verlag, 1974).

Salomon, D.

D. Salomon, Data Compression, the Complete Reference, 3rd ed. (Springer, 2004).

Saltz, J. H.

B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of the clustering properties of the Hilbert space-filling curve,” IEEE Trans. Knowl. Data Eng. 13, 124-141 (2001).
[CrossRef]

Sangriotis, M. S.

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray traced model of the capturing optics,” J. Electron. Imaging 15, 043007 (2006).
[CrossRef]

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Physical modelling of microlens array setup for use in computer generated IP,” in Electronic Imaging 2005 (IS&T, SPIE, 2005), paper 5664A-75.

N. P. Sgouros, A. G. Andreou, M. S. Sangriotis, P. G. Papageorgas, D. M. Maroulis , and N. G. Theofanous, “Compression of IP images for autostereoscopic 3D imaging applications,” in Proceedings of 3rd International Symposium on Image and Signal Processing and Analysis, S.Loncaric, A. Neri, and H. Babic, ed. (IEEE, 2003), pp. 223-227.

N. P. Sgouros, D. P. Chaikalis, P. G. Papageorgas, and M. S. Sangriotis, “Omnidirectional integral photography images compression using the 3D-DCT,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DTuA2.
[PubMed]

Sgouros, N.

G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, “Enhanced reconstruction of 3D shape and texture from integral photography images,” Appl. Opt. 46, 5311-5320 (2007).
[CrossRef] [PubMed]

Sgouros, N. P.

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray traced model of the capturing optics,” J. Electron. Imaging 15, 043007 (2006).
[CrossRef]

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Physical modelling of microlens array setup for use in computer generated IP,” in Electronic Imaging 2005 (IS&T, SPIE, 2005), paper 5664A-75.

N. P. Sgouros, D. P. Chaikalis, P. G. Papageorgas, and M. S. Sangriotis, “Omnidirectional integral photography images compression using the 3D-DCT,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DTuA2.
[PubMed]

N. P. Sgouros, A. G. Andreou, M. S. Sangriotis, P. G. Papageorgas, D. M. Maroulis , and N. G. Theofanous, “Compression of IP images for autostereoscopic 3D imaging applications,” in Proceedings of 3rd International Symposium on Image and Signal Processing and Analysis, S.Loncaric, A. Neri, and H. Babic, ed. (IEEE, 2003), pp. 223-227.

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
[CrossRef]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
[CrossRef]

Son, J.-Y.

Stern, A.

Stoica, A.

A. Stoica, C. Vertan, and C. Fernandez-Maloigne, “Objective and subjective color image quality evaluation for JPEG 2000 compressed images,” in Proceedings of IEEE International Symposium on Signals, Circuits and Systems (IEEE, 2003), pp. 137-140.

Theofanous, N. G.

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray traced model of the capturing optics,” J. Electron. Imaging 15, 043007 (2006).
[CrossRef]

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Physical modelling of microlens array setup for use in computer generated IP,” in Electronic Imaging 2005 (IS&T, SPIE, 2005), paper 5664A-75.

N. P. Sgouros, A. G. Andreou, M. S. Sangriotis, P. G. Papageorgas, D. M. Maroulis , and N. G. Theofanous, “Compression of IP images for autostereoscopic 3D imaging applications,” in Proceedings of 3rd International Symposium on Image and Signal Processing and Analysis, S.Loncaric, A. Neri, and H. Babic, ed. (IEEE, 2003), pp. 223-227.

Theoharis, T.

G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, “Enhanced reconstruction of 3D shape and texture from integral photography images,” Appl. Opt. 46, 5311-5320 (2007).
[CrossRef] [PubMed]

Ueshige, Y.

J. Zhang, S.-I. Kamata, and Y. Ueshige, “A pseudo-Hilbert scan for arbitrarily-sized arrays,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A, 682-690 (2007).
[CrossRef]

Vertan, C.

A. Stoica, C. Vertan, and C. Fernandez-Maloigne, “Objective and subjective color image quality evaluation for JPEG 2000 compressed images,” in Proceedings of IEEE International Symposium on Signals, Circuits and Systems (IEEE, 2003), pp. 137-140.

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
[CrossRef]

Westwater, R.

B. Furht, J. Greenberg, and R. Westwater, Motion Estimation Algorithms for Video Compression (Kluwer Academic, 1997).
[CrossRef]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).

Wöpking, M.

S. Pastoor and M. Wöpking, “3-D displays: a review of current technologies,” Displays 17(2), 100-110 (1997).
[CrossRef]

Yeom, S.

Zaharia, R.

R. Zaharia, A. Aggoun, and M. McCormick, “Adaptive 3D-DCT compression algorithm for continuous parallax 3D integral imaging,” Signal Process. Image Commun. 17, 231-242 (2002).
[CrossRef]

Zhang, J.

J. Zhang, S.-I. Kamata, and Y. Ueshige, “A pseudo-Hilbert scan for arbitrarily-sized arrays,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A, 682-690 (2007).
[CrossRef]

Ziv, J.

A. Lempel and J. Ziv, “Compression of two-dimensional data,” IEEE Trans. Inf. Theory IT-32, 2-8 (1986).

Appl. Opt. (1)

G. Passalis, N. Sgouros, S. Athineos, and T. Theoharis, “Enhanced reconstruction of 3D shape and texture from integral photography images,” Appl. Opt. 46, 5311-5320 (2007).
[CrossRef] [PubMed]

C. R. Acad. Sci. (1)

G. Lippmann, “La Photographie integrale,” C. R. Acad. Sci. 146, 446-455 (1908).

Comput. Graph. (1)

M. Halle, “Autostereoscopic displays and computer graphics,” Comput. Graph. 31(2), 58-62 (1997).
[CrossRef]

Displays (1)

S. Pastoor and M. Wöpking, “3-D displays: a review of current technologies,” Displays 17(2), 100-110 (1997).
[CrossRef]

IEEE Trans. Image Process. (2)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600-612 (2004).
[CrossRef]

C. Gotsman and M. Lindenbaum, “On the metric properties of discrete space filling curves,” IEEE Trans. Image Process. 5, 794-797 (1996).
[CrossRef]

IEEE Trans. Knowl. Data Eng. (1)

B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of the clustering properties of the Hilbert space-filling curve,” IEEE Trans. Knowl. Data Eng. 13, 124-141 (2001).
[CrossRef]

IEICE Trans. Fundam. Electron. Commun. Comput. Sci. (1)

J. Zhang, S.-I. Kamata, and Y. Ueshige, “A pseudo-Hilbert scan for arbitrarily-sized arrays,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A, 682-690 (2007).
[CrossRef]

J. Display Technol. (1)

J. Electron. Imaging (1)

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray traced model of the capturing optics,” J. Electron. Imaging 15, 043007 (2006).
[CrossRef]

Opt. Eng. (1)

J. S. Jang and B. Javidi, “Formation of orthoscopic three dimensional real images in direct pickup one-step integral imaging,” Opt. Eng. 42, 1869-1870 (2003).
[CrossRef]

Opt. Express (2)

Pattern Recogn. (1)

K.-L. Chung and L.-C. Chang, “A novel two-phase Hilbert-scan-based search algorithm for block motion estimation using CTF data structure,” Pattern Recogn. 37, 1451-1458 (2004).
[CrossRef]

Signal Process. Image Commun. (1)

R. Zaharia, A. Aggoun, and M. McCormick, “Adaptive 3D-DCT compression algorithm for continuous parallax 3D integral imaging,” Signal Process. Image Commun. 17, 231-242 (2002).
[CrossRef]

Other (11)

N. P. Sgouros, A. G. Andreou, M. S. Sangriotis, P. G. Papageorgas, D. M. Maroulis , and N. G. Theofanous, “Compression of IP images for autostereoscopic 3D imaging applications,” in Proceedings of 3rd International Symposium on Image and Signal Processing and Analysis, S.Loncaric, A. Neri, and H. Babic, ed. (IEEE, 2003), pp. 223-227.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).

N. P. Sgouros, D. P. Chaikalis, P. G. Papageorgas, and M. S. Sangriotis, “Omnidirectional integral photography images compression using the 3D-DCT,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DTuA2.
[PubMed]

H. Sagan, Space-Filling Curves (Springer-Verlag, 1974).

S. Kamata and Y. Bandoh, “An address generator of a pseudo-Hilbert scan in a rectangle region,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 1997), pp. 707-710.
[CrossRef]

A. Lempel and J. Ziv, “Compression of two-dimensional data,” IEEE Trans. Inf. Theory IT-32, 2-8 (1986).

D. Salomon, Data Compression, the Complete Reference, 3rd ed. (Springer, 2004).

B. Furht, J. Greenberg, and R. Westwater, Motion Estimation Algorithms for Video Compression (Kluwer Academic, 1997).
[CrossRef]

POV-Ray: The Persistence of Vision Raytracer, www.povray.org.

S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Physical modelling of microlens array setup for use in computer generated IP,” in Electronic Imaging 2005 (IS&T, SPIE, 2005), paper 5664A-75.

A. Stoica, C. Vertan, and C. Fernandez-Maloigne, “Objective and subjective color image quality evaluation for JPEG 2000 compressed images,” in Proceedings of IEEE International Symposium on Signals, Circuits and Systems (IEEE, 2003), pp. 137-140.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Operating principle of (a) an InIm capturing setup, (b) an InIm display setup.

Fig. 2
Fig. 2

(a) InIm of a fish, (b) 3 × 3 EI portion of the same InIm, and (c) correlation coefficient of a square part of the central EI in (b) over the area of 3 × 3 EIs.

Fig. 3
Fig. 3

Traversal schemes for rearranging the EIs of the InIm 2D structure into a 1D stream of EIs: (a) parallel, (b) perpendicular, (c) spiral, and (d) Hilbert.

Fig. 4
Fig. 4

(a) Mean value and (b) standard deviation of r i j for different traversal schemes and InIm sizes.

Fig. 5
Fig. 5

Mean correlation coefficients for groups of eight EIs for all traversal schemes of (a) a characteristic InIm and (b) the same InIm rotated by 90 ° .

Fig. 6
Fig. 6

Synthetic InIms of the fish scene with (a) 8 × 8 EIs, (b) 256 × 256 EIs. Physically acquired InIms (c) of a dice with 16 × 16 EIs and (d) a fireplace with 64 × 64 EIs.

Fig. 7
Fig. 7

(a) PSNR ¯ and (b) σ PSNR / PSNR ¯ for an encoded InIm as a function of bit rate for the MPEG-2 encoder.

Fig. 8
Fig. 8

(a) PSNR and (b) σ PSNR / PSRN ¯ for an encoded InIm as a function of bit rate for the 3D-DCT encoder.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r i j = d ( e i , e j ) 2 | i j | , i , j : i > j .
d ( e i , e j ) ( w i w j ) 2 + ( c i c j ) 2 .
PSNR dB = 10 × l o g 1 0 ( 2 5 5 2 MSE ) ,
MSE = 1 N M i = 1 N j = 1 M [ I ( i , j ) I r ( i , j ) ] 2 ,
PSNR ¯ = 1 K L s = 1 K t = 1 L PSNR s , t ,
σ PSNR = s = 1 K t = 1 L PSNR s , t 2 K L ( s = 1 K t = 1 L PSNR s , t K L ) 2 .

Metrics