Abstract

Digital holography enables a multifocus quantitative phase microscopy for the investigation of reflective surfaces and for marker-free live cell imaging. For digital holographic long-term investigations of living cells an automated (subsequent) robust and reliable numerical focus adjustment is of particular importance. Four numerical methods for the determination of the optimal focus position in the numerical reconstruction and propagation of the complex object waves of pure phase objects are characterized, compared, and adapted to the requirements of digital holographic microscopy. Results from investigations of an engineered surface and human pancreas tumor cells demonstrate the applicability of Fourier-weighting- and gradient-operator-based methods for robust and reliable automated subsequent numerical digital holographic focusing.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparative analysis of autofocus functions in digital in-line phase-shifting holography

Elsa S. R. Fonseca, Paulo T. Fiadeiro, Manuela Pereira, and António Pinheiro
Appl. Opt. 55(27) 7663-7674 (2016)

Recent advances in holographic 3D particle tracking

Pasquale Memmolo, Lisa Miccio, Melania Paturzo, Giuseppe Di Caprio, Giuseppe Coppola, Paolo A. Netti, and Pietro Ferraro
Adv. Opt. Photon. 7(4) 713-755 (2015)

Enhanced robustness digital holographic microscopy for demanding environment of space biology

M. Fatih Toy, Stéphane Richard, Jonas Kühn, Alfredo Franco-Obregón, Marcel Egli, and Christian Depeursinge
Biomed. Opt. Express 3(2) 313-326 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription