Abstract

Free space optical communications (FSOC) is a method by which one transmits a modulated beam of light through the atmosphere for broadband applications. Fundamental limitations of FSOC arise from the environment through which light propagates. This work addresses transmitted light beam dispersion (spatial, angular, and temporal dispersion) in FSOC operating as a ground-to-air link when clouds exist along the communications channel. Light signals (photons) transmitted through clouds will interact with the cloud particles. Photon–particle interaction causes dispersion of light signals, which has significant effects on signal attenuation and pulse spread. The correlation between spatial and angular dispersion is investigated as well, which plays an important role on the receiver design. Moreover, the paper indicates that temporal dispersion (pulse spread) and energy loss strongly depend on the aperture size of the receiver, the field-of-view (FOV), and the position of the receiver relative to the optical axis of the transmitter.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today's crowded marketplace,” Proc. SPIE 3232, 119-128 (1998).
  2. J. C. Juarez, A. Dwivedi, A. Roger Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46-51 (2006).
  3. B. Wu, “Free-space optical communications through the scattering medium: analysis of signal characteristics,” Ph.D. dissertation (The Pennsylvania State University, 2007).
  4. B. Wu, B. Marchant, and M. Kavehrad, “Channel modeling of light signals propagating through a battlefield environment: analysis of channel spatial, angular, and temporal dispersion,” Appl. Opt. 46, 6442-6448 (2007).
    [CrossRef]
  5. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293-1300 (2002).
  6. W. E. K. Middleton, “The early history of the visibility problem,” Appl. Opt. 3, 599-602 (1964).
  7. E. A. Bucher, “Computer simulation of light pulse propagation for communication through thick clouds,” Appl. Opt. 12, 2391-2400 (1973).
  8. A. P. Ciervo, “Propagation through optically thick media,” Appl. Opt. 34, 7137-7148 (1995).
  9. S. Arnon, D. Sadot, and N. S. Kopeika, “Simple mathematical models for temporal, spatial, angular and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations,” J. Mod. Opt. 41, 1955-1972 (1994).
    [CrossRef]
  10. S. Arnon, D. Sadot, and N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication,” J. Mod. Opt. 41, 1591-1605 (1994).
    [CrossRef]
  11. S. Arnon and N. S. Kopeika, “Adaptive optical transmitter and receiver for space communication through thin clouds,” Appl. Opt. 36, 1987-1993 (1997).
  12. S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channel: Fibers, Clouds, Water and the Atmosphere (Springer, 1988).
  13. G. C. Mooradian and M. Geller, “Temporal and angular spreading of blue-green pulses in clouds,” Appl. Opt. 21, 1572-1577 (1982).
  14. C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “Real-time measurements of visibility and transmission in far-, mid- and near-IR free space optical links,” Electron. Lett. 41, 610-611 (2005).
  15. D. K. Mynbaev and L. L. Scheiner, Fiber-Optic Communications Technology (Prentice-Hall, 2001).
  16. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).
  17. B. Y. Hamzeh, “Multi-rate wireless optical communications in cloud obscured channels,” Ph.D. dissertation (The Pennsylvania State University, 2005).
  18. V. De. Hulst, Light Scattering by Small Particles (Wiley, 1957).
  19. D. Deirmendjian, “Scattering and polarization properties of water clouds and hazes in the visible and infrared,” Appl. Opt. 3, 187-196 (1964).
  20. A. S. Jursa, Handbook of Geophysics and the Space Environment, Air Force Geophysics Laboratory (United States Air Force, 1985).
  21. F. Smith, The Infrared & Electro-optical Systems Handbook: Atmospheric Propagating of Radiation (SPIE, 1993).
  22. J. C. Matter and R. G. Bradley, “Optical pulse propagation through clouds,” Appl. Opt. 20, 2220-2228 (1981).
  23. G. C. Mooradian, M. Geller, L. B. Stotts, D. H. Stephens, and R. A. Krautwald, “Blue-green pulsed propagation through fog,” Appl. Opt. 18, 429-441 (1979).

2007

2006

J. C. Juarez, A. Dwivedi, A. Roger Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46-51 (2006).

2005

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “Real-time measurements of visibility and transmission in far-, mid- and near-IR free space optical links,” Electron. Lett. 41, 610-611 (2005).

2002

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293-1300 (2002).

1998

T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today's crowded marketplace,” Proc. SPIE 3232, 119-128 (1998).

1997

1995

1994

S. Arnon, D. Sadot, and N. S. Kopeika, “Simple mathematical models for temporal, spatial, angular and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations,” J. Mod. Opt. 41, 1955-1972 (1994).
[CrossRef]

S. Arnon, D. Sadot, and N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication,” J. Mod. Opt. 41, 1591-1605 (1994).
[CrossRef]

1982

1981

1979

1973

1964

Arnon, S.

S. Arnon and N. S. Kopeika, “Adaptive optical transmitter and receiver for space communication through thin clouds,” Appl. Opt. 36, 1987-1993 (1997).

S. Arnon, D. Sadot, and N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication,” J. Mod. Opt. 41, 1591-1605 (1994).
[CrossRef]

S. Arnon, D. Sadot, and N. S. Kopeika, “Simple mathematical models for temporal, spatial, angular and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations,” J. Mod. Opt. 41, 1955-1972 (1994).
[CrossRef]

Bradley, R. G.

Bucher, E. A.

Carbonneau, T. H.

T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today's crowded marketplace,” Proc. SPIE 3232, 119-128 (1998).

Ciervo, A. P.

Colvero, C. P.

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “Real-time measurements of visibility and transmission in far-, mid- and near-IR free space optical links,” Electron. Lett. 41, 610-611 (2005).

Cordeiro, M. C. R.

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “Real-time measurements of visibility and transmission in far-, mid- and near-IR free space optical links,” Electron. Lett. 41, 610-611 (2005).

De. Hulst, V.

V. De. Hulst, Light Scattering by Small Particles (Wiley, 1957).

Deirmendjian, D.

Dwivedi, A.

J. C. Juarez, A. Dwivedi, A. Roger Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46-51 (2006).

Gagliardi, R. M.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channel: Fibers, Clouds, Water and the Atmosphere (Springer, 1988).

Geller, M.

Ghatak, A.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).

Hammons, A. Roger

J. C. Juarez, A. Dwivedi, A. Roger Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46-51 (2006).

Hamzeh, B. Y.

B. Y. Hamzeh, “Multi-rate wireless optical communications in cloud obscured channels,” Ph.D. dissertation (The Pennsylvania State University, 2005).

Jones, S. D.

J. C. Juarez, A. Dwivedi, A. Roger Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46-51 (2006).

Juarez, J. C.

J. C. Juarez, A. Dwivedi, A. Roger Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46-51 (2006).

Jursa, A. S.

A. S. Jursa, Handbook of Geophysics and the Space Environment, Air Force Geophysics Laboratory (United States Air Force, 1985).

Kahn, J. M.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293-1300 (2002).

Karp, S.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channel: Fibers, Clouds, Water and the Atmosphere (Springer, 1988).

Kavehrad, M.

Kopeika, N. S.

S. Arnon and N. S. Kopeika, “Adaptive optical transmitter and receiver for space communication through thin clouds,” Appl. Opt. 36, 1987-1993 (1997).

S. Arnon, D. Sadot, and N. S. Kopeika, “Simple mathematical models for temporal, spatial, angular and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations,” J. Mod. Opt. 41, 1955-1972 (1994).
[CrossRef]

S. Arnon, D. Sadot, and N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication,” J. Mod. Opt. 41, 1591-1605 (1994).
[CrossRef]

Krautwald, R. A.

Marchant, B.

Matter, J. C.

Middleton, W. E. K.

Mooradian, G. C.

Moran, S. E.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channel: Fibers, Clouds, Water and the Atmosphere (Springer, 1988).

Mynbaev, D. K.

D. K. Mynbaev and L. L. Scheiner, Fiber-Optic Communications Technology (Prentice-Hall, 2001).

Nichols, R. A.

J. C. Juarez, A. Dwivedi, A. Roger Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46-51 (2006).

Sadot, D.

S. Arnon, D. Sadot, and N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication,” J. Mod. Opt. 41, 1591-1605 (1994).
[CrossRef]

S. Arnon, D. Sadot, and N. S. Kopeika, “Simple mathematical models for temporal, spatial, angular and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations,” J. Mod. Opt. 41, 1955-1972 (1994).
[CrossRef]

Scheiner, L. L.

D. K. Mynbaev and L. L. Scheiner, Fiber-Optic Communications Technology (Prentice-Hall, 2001).

Smith, F.

F. Smith, The Infrared & Electro-optical Systems Handbook: Atmospheric Propagating of Radiation (SPIE, 1993).

Stephens, D. H.

Stotts, L. B.

G. C. Mooradian, M. Geller, L. B. Stotts, D. H. Stephens, and R. A. Krautwald, “Blue-green pulsed propagation through fog,” Appl. Opt. 18, 429-441 (1979).

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channel: Fibers, Clouds, Water and the Atmosphere (Springer, 1988).

Thyagarajan, K.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).

von der Weid, J. P.

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “Real-time measurements of visibility and transmission in far-, mid- and near-IR free space optical links,” Electron. Lett. 41, 610-611 (2005).

Weerackody, V.

J. C. Juarez, A. Dwivedi, A. Roger Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46-51 (2006).

Wisely, D. R.

T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today's crowded marketplace,” Proc. SPIE 3232, 119-128 (1998).

Wu, B.

B. Wu, B. Marchant, and M. Kavehrad, “Channel modeling of light signals propagating through a battlefield environment: analysis of channel spatial, angular, and temporal dispersion,” Appl. Opt. 46, 6442-6448 (2007).
[CrossRef]

B. Wu, “Free-space optical communications through the scattering medium: analysis of signal characteristics,” Ph.D. dissertation (The Pennsylvania State University, 2007).

Zhu, X.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293-1300 (2002).

Appl. Opt.

Electron. Lett.

C. P. Colvero, M. C. R. Cordeiro, and J. P. von der Weid, “Real-time measurements of visibility and transmission in far-, mid- and near-IR free space optical links,” Electron. Lett. 41, 610-611 (2005).

IEEE Commun. Mag.

J. C. Juarez, A. Dwivedi, A. Roger Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46-51 (2006).

IEEE Trans. Commun.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293-1300 (2002).

J. Mod. Opt.

S. Arnon, D. Sadot, and N. S. Kopeika, “Simple mathematical models for temporal, spatial, angular and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations,” J. Mod. Opt. 41, 1955-1972 (1994).
[CrossRef]

S. Arnon, D. Sadot, and N. S. Kopeika, “Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication,” J. Mod. Opt. 41, 1591-1605 (1994).
[CrossRef]

Proc. SPIE

T. H. Carbonneau and D. R. Wisely, “Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today's crowded marketplace,” Proc. SPIE 3232, 119-128 (1998).

Other

B. Wu, “Free-space optical communications through the scattering medium: analysis of signal characteristics,” Ph.D. dissertation (The Pennsylvania State University, 2007).

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channel: Fibers, Clouds, Water and the Atmosphere (Springer, 1988).

D. K. Mynbaev and L. L. Scheiner, Fiber-Optic Communications Technology (Prentice-Hall, 2001).

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).

B. Y. Hamzeh, “Multi-rate wireless optical communications in cloud obscured channels,” Ph.D. dissertation (The Pennsylvania State University, 2005).

V. De. Hulst, Light Scattering by Small Particles (Wiley, 1957).

A. S. Jursa, Handbook of Geophysics and the Space Environment, Air Force Geophysics Laboratory (United States Air Force, 1985).

F. Smith, The Infrared & Electro-optical Systems Handbook: Atmospheric Propagating of Radiation (SPIE, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Description of FSOC operating in the ground-to-air link. Place a transmitter with the beam divergence half-angle θ 0 at point O. The length of the free space channel is z 0 (no cloud particles exist in the free space). The length of the cloud medium is L c h . Place a receiver with receiver area A at point B. The receiver is inside clouds. Assume that the optical axis of the transmitter and receiver are parallel to each other. O B is the pointing error caused by the mobility of the receiver. The total channel length is O O = L c h + z 0 .

Fig. 2
Fig. 2

Simplified description of FSOC operating in the ground-to-air link. The transmitter is located at point O. The receiver is located at point B. The beam size of laser is not considered.

Fig. 3
Fig. 3

Photon encounters a particle (a single scattering event). The photon is either absorbed by the particle with a probability P a b s or scattered away with a scattering angle θ. Variable d is the scattering distance between two consecutive scatterings.

Fig. 4
Fig. 4

Phase functions of cumulus cloud particles at wavelength 1.55 μm in logarithmic scales.

Fig. 5
Fig. 5

Trajectory of a photon as it propagates through the 3D space. Cylinder size, 5 × L c h in radius; L c h in height. d n , distance between two consecutive scatterings; θ n , angle between z n and z n + 1 axis; ϕ n , angle between the rotation of the scattering plane relative to the incident path; O n , nth scattering point; D, point that the photon passes through the receiver plane; r, spatial dispersion; ϕ, angular dispersion; L t , total traveling distance that a photon travels through the cylinder (bold dash line inside the cylinder, L t = O 1 O 2 + O 2 O 3 + O 3 D ).

Fig. 6
Fig. 6

Two-dimensional histograms of spatial and angular dispersion of the received photons distributed in the receiver plane. (a)  τ = 5 , (b)  τ = 17 .

Fig. 7
Fig. 7

Received energy for different FOV half-angles when τ = 5 and τ = 17 . The receiver is located at the center of the receiver plane. The aperture size is 20 cm in diameter.

Fig. 8
Fig. 8

Photons distributed in the receiver plane ( x y plane). (a)  τ = 5 , (b)  τ = 17 .

Fig. 9
Fig. 9

Temporal dispersion of the received photons for different FOV half-angle values. The receiver is located at the center of the receiver plane. The aperture size of the receiver in diameter is 20 cm . (a)  τ = 5 , (b)  τ = 17 .

Tables (1)

Tables Icon

Table 1 Parameters of Eq. (8) for a Cumulus Cloud and the Properties of Cumulus Cloud Particles at Wavelength 1.55 μ m

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P r ( d B ) = P t ( d B ) + L f ( d B ) + L s ( d B ) + L o ( d B ) ,
L f ( d B ) = 10 log 10 A π [ θ 0 × ( z 0 + L c h ) ] 2 ,
L s ( d B ) = P r ( d B ) P t ( d B ) = 10 log 10 [ E r T t E t T r ] = 10 log 10 [ E r E t ] 10 log 10 [ 1 + Δ t T t ] ,
p ( d ) = ( 1 / D ave ) exp ( d / D ave ) ,
D ave = 1000 / k s .
P abs = 1 ω ,
ω = k s / k e .
n ( r ) = a r α . exp ( b r γ ) , 0 r <
t d = ( L t L c h ) / c ,
E r = N r / N t ,
N r = N LOS + N scat .
P LOS = P t exp ( τ ) ,
τ = L c h × k e .
τ L c h × k s = L c h / D ave .
E r = E scat + E LOS ,

Metrics