Abstract

The generation of broadband tunable optical pulses is demonstrated in the range of 10501300nm with noncollinear optical parametric amplification of white-light seed pulses in potassium titanyl phosphate (KTiOPO4). Pulse bandwidths of 50nm (12THz) are demonstrated with pulse energies up to 20μJ when pumped with 500μJ, 150fs pulses centered at 802nm. The required signal–pump angles range from 1.9° to 5.0°. The pulse duration was 60fs after compression.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilhelm, J. Piel, and E. Riedle, “Sub-20 fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,” Opt. Lett. 22, 1494-1496 (1997).
    [CrossRef]
  2. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457-465 (2000).
  3. G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Sub-20 fs tunable pulses in the visible from an 82 MHz optical parametric oscillator,” Opt. Lett. 20, 1562-1564 (1995).
    [CrossRef] [PubMed]
  4. D. Kraemer, R. Hua, M. L. Cowan, K. Franjic, and R. J. D. Miller, “Ultrafast noncollinear optical parametric chirped pulse amplification in KTiOAsO4,” Opt. Lett. 31, 981-983 (2006).
    [CrossRef] [PubMed]
  5. D. Kraemer, M. L. Cowan, R. Z. Hua, K. Franjic, and R. D. Miller, “High-power femtosecond infrared laser source based on noncollinear optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 24, 813-818 (2007).
    [CrossRef]
  6. G. Cirmi, D. Brida, C. Manzoni, M. Marangoni, S. D. Silvestri, and G. Cerullo, “Few-optical-cycle pulses in the near-infrared from a noncollinear optical parametric amplifier,” Opt. Lett. 32, 2396-2398 (2007).
    [CrossRef] [PubMed]
  7. M. V. Pack, D. J. Armstrong, and A. V. Smith, “Measurement of the χ(2) tensors of KTiOPO4, KTiOAsO4, RbTiOPO4, and RbTiOAsO4 crystals,” Appl. Opt. 43, 3319-3323 (2004).
    [CrossRef] [PubMed]
  8. U. Chatterjee, A. M. Rudra, P. K. Datta, G. C. Bhar, and T. Sasaki, “Efficient tunable near-infrared source by difference-frequency mixing in potassium titanyl phosphate crystal,” J. Phys. D 28, 275-279 (1995).
    [CrossRef]
  9. P. C. M. Planken, H. J. Bakker, L. Kuipers, and A. Lagendijk, “Frequency chirp in optical parametric amplification with large phase mismatch in noncentrosymmetric crystals,” J. Opt. Soc. Am. B 7, 2150-2154 (1990).
    [CrossRef]
  10. A. Yariv, Introduction to Optical Electronics (CBS College Publishing, 1984).
  11. H. K. Nienhuys, A. J. Lock, R. A. van Santen, and H. J. Bakker, “Dynamics of water molecules in an alkaline environment,” J. Chem. Phys. 117, 8021-8029 (2002).
    [CrossRef]
  12. J. Piel, M. Beutter, and E. Riedle, “20-50 fs pulses tunable across the near infrared from a blue-pumped noncollinear parametric amplifier,” Opt. Lett. 25, 180-182 (2000).
    [CrossRef]
  13. A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10 fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23, 1292-1294 (1998).
    [CrossRef]
  14. O. Isaienko and E. Borguet, “Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate,” Opt. Express 16, 3949-3954 (2008).
    [CrossRef] [PubMed]

2008

2007

2006

2004

2002

H. K. Nienhuys, A. J. Lock, R. A. van Santen, and H. J. Bakker, “Dynamics of water molecules in an alkaline environment,” J. Chem. Phys. 117, 8021-8029 (2002).
[CrossRef]

2000

J. Piel, M. Beutter, and E. Riedle, “20-50 fs pulses tunable across the near infrared from a blue-pumped noncollinear parametric amplifier,” Opt. Lett. 25, 180-182 (2000).
[CrossRef]

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457-465 (2000).

1998

1997

1995

G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, “Sub-20 fs tunable pulses in the visible from an 82 MHz optical parametric oscillator,” Opt. Lett. 20, 1562-1564 (1995).
[CrossRef] [PubMed]

U. Chatterjee, A. M. Rudra, P. K. Datta, G. C. Bhar, and T. Sasaki, “Efficient tunable near-infrared source by difference-frequency mixing in potassium titanyl phosphate crystal,” J. Phys. D 28, 275-279 (1995).
[CrossRef]

1990

Armstrong, D. J.

Bakker, H. J.

H. K. Nienhuys, A. J. Lock, R. A. van Santen, and H. J. Bakker, “Dynamics of water molecules in an alkaline environment,” J. Chem. Phys. 117, 8021-8029 (2002).
[CrossRef]

P. C. M. Planken, H. J. Bakker, L. Kuipers, and A. Lagendijk, “Frequency chirp in optical parametric amplification with large phase mismatch in noncentrosymmetric crystals,” J. Opt. Soc. Am. B 7, 2150-2154 (1990).
[CrossRef]

Beutter, M.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457-465 (2000).

J. Piel, M. Beutter, and E. Riedle, “20-50 fs pulses tunable across the near infrared from a blue-pumped noncollinear parametric amplifier,” Opt. Lett. 25, 180-182 (2000).
[CrossRef]

Bhar, G. C.

U. Chatterjee, A. M. Rudra, P. K. Datta, G. C. Bhar, and T. Sasaki, “Efficient tunable near-infrared source by difference-frequency mixing in potassium titanyl phosphate crystal,” J. Phys. D 28, 275-279 (1995).
[CrossRef]

Borguet, E.

Brida, D.

Cavallari, M.

Cerullo, G.

Chatterjee, U.

U. Chatterjee, A. M. Rudra, P. K. Datta, G. C. Bhar, and T. Sasaki, “Efficient tunable near-infrared source by difference-frequency mixing in potassium titanyl phosphate crystal,” J. Phys. D 28, 275-279 (1995).
[CrossRef]

Cirmi, G.

Cowan, M. L.

Datta, P. K.

U. Chatterjee, A. M. Rudra, P. K. Datta, G. C. Bhar, and T. Sasaki, “Efficient tunable near-infrared source by difference-frequency mixing in potassium titanyl phosphate crystal,” J. Phys. D 28, 275-279 (1995).
[CrossRef]

Driscoll, T. J.

Franjic, K.

Gale, G. M.

Hache, F.

Hua, R.

Hua, R. Z.

Isaienko, O.

Kobayashi, T.

Kraemer, D.

Kuipers, L.

Lagendijk, A.

Lochbrunner, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457-465 (2000).

Lock, A. J.

H. K. Nienhuys, A. J. Lock, R. A. van Santen, and H. J. Bakker, “Dynamics of water molecules in an alkaline environment,” J. Chem. Phys. 117, 8021-8029 (2002).
[CrossRef]

Manzoni, C.

Marangoni, M.

Miller, R. D.

Miller, R. J. D.

Nienhuys, H. K.

H. K. Nienhuys, A. J. Lock, R. A. van Santen, and H. J. Bakker, “Dynamics of water molecules in an alkaline environment,” J. Chem. Phys. 117, 8021-8029 (2002).
[CrossRef]

Pack, M. V.

Piel, J.

Planken, P. C. M.

Riedle, E.

Rudra, A. M.

U. Chatterjee, A. M. Rudra, P. K. Datta, G. C. Bhar, and T. Sasaki, “Efficient tunable near-infrared source by difference-frequency mixing in potassium titanyl phosphate crystal,” J. Phys. D 28, 275-279 (1995).
[CrossRef]

Sakane, I.

Sasaki, T.

U. Chatterjee, A. M. Rudra, P. K. Datta, G. C. Bhar, and T. Sasaki, “Efficient tunable near-infrared source by difference-frequency mixing in potassium titanyl phosphate crystal,” J. Phys. D 28, 275-279 (1995).
[CrossRef]

Schenkl, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457-465 (2000).

Shirakawa, A.

Silvestri, S. D.

Smith, A. V.

Sporlein, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457-465 (2000).

van Santen, R. A.

H. K. Nienhuys, A. J. Lock, R. A. van Santen, and H. J. Bakker, “Dynamics of water molecules in an alkaline environment,” J. Chem. Phys. 117, 8021-8029 (2002).
[CrossRef]

Wilhelm, T.

Yariv, A.

A. Yariv, Introduction to Optical Electronics (CBS College Publishing, 1984).

Zinth, W.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457-465 (2000).

Appl. Opt.

Appl. Phys. B

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457-465 (2000).

J. Chem. Phys.

H. K. Nienhuys, A. J. Lock, R. A. van Santen, and H. J. Bakker, “Dynamics of water molecules in an alkaline environment,” J. Chem. Phys. 117, 8021-8029 (2002).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

U. Chatterjee, A. M. Rudra, P. K. Datta, G. C. Bhar, and T. Sasaki, “Efficient tunable near-infrared source by difference-frequency mixing in potassium titanyl phosphate crystal,” J. Phys. D 28, 275-279 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Other

A. Yariv, Introduction to Optical Electronics (CBS College Publishing, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Phase mismatch curves for collinear ( ψ i = 0 ° ) and NOPA in KTP with a pump wavelength of 800 nm as a function of signal wavelengths for polarizations and angles as shown in the inset. The angles are optimized for 1120 nm .

Fig. 2
Fig. 2

Experimental setup. [beamsplitter (BS); lenses ( L 1 and L 2 ); sapphire plate (sapph); external angles ( ψ x , θ x , and χ x ); polarization (pol).] The prism compressor is not shown.

Fig. 3
Fig. 3

(a) Normalized spectra of the generated pulses for various internal noncollinear ψ i . (b) Measured and calculated tuning curves. The error bars in the wavelength indicate the FWHM bandwidth. The calculated curves have been offset by 0.5 ° ( ψ i ) and + 2.1 ° ( θ i ).

Fig. 4
Fig. 4

Autocorrelation traces of the pump pulses at 800 nm and the infrared pulses at 1110 nm , both with and without compression.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g 0 = χ ( 2 ) E pu c 4 ω s ω i n i n s = 2 π χ ( 2 ) 2 I pu n i n s λ s λ i ϵ 0 c ,

Metrics