Abstract

A novel two-dimensional (2D) phase grating light modulator for projection display is proposed. It consists of an upper moveable grating, a bottom mirror, and four supporting posts between them. After the driving voltage is applied to the modulator, the upper grating will move down, which induces a phase difference and, therefore, leads to a controlled variation of its diffraction pattern. Optical characteristics of the modulator and the modulator array are analyzed with Fourier optics theory. The analysis shows the incident light will be switched from its zero order diffraction fringe to the first order diffraction fringe when the phase difference between the moveable grating and the bottom mirror changes from 2π to π. The diffraction pattern of the light modulator array is the coherent superposition of all single modulators. A 16×16 modulator array is fabricated by surface micromachining technology. The test result shows that the device works well when it is actuated by a voltage with a 1kHz frequency and 10V amplitude. Both theoretical analysis and experiment results indicate that the 2D phase grating light modulator has potential application in a projection display system.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24, 4433 -4453 (2006).
    [CrossRef]
  2. H. Tamada, A. Taguchi, and K. Oniki, “High contrast and efficient blazed grating light valve for full-HD 5,000 lumen laser projectors,” 2006 Digest of Technical Papers. International Conference on Consumer Electronics (IEEE, 2006), pp. 133-134.
    [CrossRef]
  3. S. Kim, G. Barbastathis, and H. L. Tuller, “MEMS for optical functionality,” J. Electroceram. 12, 133-144 (2004).
    [CrossRef]
  4. L. J. Hornbeck, “Digital light processing TM for high brightness, high-resolution applications,” Proc. SPIE 3013, 27-40 (1997).
    [CrossRef]
  5. D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165-171 (1997).
    [CrossRef]
  6. Z. Jie, H. Shanglian, and Z. Zhihai, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).
  7. Z. Jie and F. Hongqiao, “Optical and electrodynamic analysis of a novel spatial light modulator,” Proc. SPIE 5717, 204-210 (2005).
    [CrossRef]
  8. Y. Xu, H. Shang lian, and Z. Jie, “Optical analysis and simulation of reflector moving grating light modulator,” Opto-Electron. Eng. 33, 38-42 (2006).
  9. L. N. Guang, Fourier Optics (Mechanics Industry Press, 1988).
  10. Z. Zhihai and H. Shanglian, “Fabrication improvement of the grating light modulator,” in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2006), pp. 1483-1486.
  11. J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, 1552-1574 (1998 ).
    [CrossRef]
  12. Y. Gengyu, Flat Panel Display Technology (Posts & Telecommunications Press, 2002), pp. 193-196.

2006 (3)

M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24, 4433 -4453 (2006).
[CrossRef]

Z. Jie, H. Shanglian, and Z. Zhihai, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).

Y. Xu, H. Shang lian, and Z. Jie, “Optical analysis and simulation of reflector moving grating light modulator,” Opto-Electron. Eng. 33, 38-42 (2006).

2005 (1)

Z. Jie and F. Hongqiao, “Optical and electrodynamic analysis of a novel spatial light modulator,” Proc. SPIE 5717, 204-210 (2005).
[CrossRef]

2004 (1)

S. Kim, G. Barbastathis, and H. L. Tuller, “MEMS for optical functionality,” J. Electroceram. 12, 133-144 (2004).
[CrossRef]

1998 ()

J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, 1552-1574 (1998 ).
[CrossRef]

1997 (2)

L. J. Hornbeck, “Digital light processing TM for high brightness, high-resolution applications,” Proc. SPIE 3013, 27-40 (1997).
[CrossRef]

D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165-171 (1997).
[CrossRef]

Barbastathis, G.

S. Kim, G. Barbastathis, and H. L. Tuller, “MEMS for optical functionality,” J. Electroceram. 12, 133-144 (2004).
[CrossRef]

Bloom, D. M.

D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165-171 (1997).
[CrossRef]

Bustillo, J. M.

J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, 1552-1574 (1998 ).
[CrossRef]

Ford, J. E.

Gengyu, Y.

Y. Gengyu, Flat Panel Display Technology (Posts & Telecommunications Press, 2002), pp. 193-196.

Guang, L. N.

L. N. Guang, Fourier Optics (Mechanics Industry Press, 1988).

Hongqiao, F.

Z. Jie and F. Hongqiao, “Optical and electrodynamic analysis of a novel spatial light modulator,” Proc. SPIE 5717, 204-210 (2005).
[CrossRef]

Hornbeck, L. J.

L. J. Hornbeck, “Digital light processing TM for high brightness, high-resolution applications,” Proc. SPIE 3013, 27-40 (1997).
[CrossRef]

Howe, R. T.

J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, 1552-1574 (1998 ).
[CrossRef]

Jie, Z.

Y. Xu, H. Shang lian, and Z. Jie, “Optical analysis and simulation of reflector moving grating light modulator,” Opto-Electron. Eng. 33, 38-42 (2006).

Z. Jie, H. Shanglian, and Z. Zhihai, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).

Z. Jie and F. Hongqiao, “Optical and electrodynamic analysis of a novel spatial light modulator,” Proc. SPIE 5717, 204-210 (2005).
[CrossRef]

Kim, S.

S. Kim, G. Barbastathis, and H. L. Tuller, “MEMS for optical functionality,” J. Electroceram. 12, 133-144 (2004).
[CrossRef]

Muller, R. S.

J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, 1552-1574 (1998 ).
[CrossRef]

Oniki, K.

H. Tamada, A. Taguchi, and K. Oniki, “High contrast and efficient blazed grating light valve for full-HD 5,000 lumen laser projectors,” 2006 Digest of Technical Papers. International Conference on Consumer Electronics (IEEE, 2006), pp. 133-134.
[CrossRef]

Shang lian, H.

Y. Xu, H. Shang lian, and Z. Jie, “Optical analysis and simulation of reflector moving grating light modulator,” Opto-Electron. Eng. 33, 38-42 (2006).

Shanglian, H.

Z. Jie, H. Shanglian, and Z. Zhihai, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).

Z. Zhihai and H. Shanglian, “Fabrication improvement of the grating light modulator,” in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2006), pp. 1483-1486.

Solgaard, O.

Taguchi, A.

H. Tamada, A. Taguchi, and K. Oniki, “High contrast and efficient blazed grating light valve for full-HD 5,000 lumen laser projectors,” 2006 Digest of Technical Papers. International Conference on Consumer Electronics (IEEE, 2006), pp. 133-134.
[CrossRef]

Tamada, H.

H. Tamada, A. Taguchi, and K. Oniki, “High contrast and efficient blazed grating light valve for full-HD 5,000 lumen laser projectors,” 2006 Digest of Technical Papers. International Conference on Consumer Electronics (IEEE, 2006), pp. 133-134.
[CrossRef]

Tuller, H. L.

S. Kim, G. Barbastathis, and H. L. Tuller, “MEMS for optical functionality,” J. Electroceram. 12, 133-144 (2004).
[CrossRef]

Wu, M. C.

Xu, Y.

Y. Xu, H. Shang lian, and Z. Jie, “Optical analysis and simulation of reflector moving grating light modulator,” Opto-Electron. Eng. 33, 38-42 (2006).

Zhihai, Z.

Z. Jie, H. Shanglian, and Z. Zhihai, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).

Z. Zhihai and H. Shanglian, “Fabrication improvement of the grating light modulator,” in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2006), pp. 1483-1486.

Acta Opt. Sin. (1)

Z. Jie, H. Shanglian, and Z. Zhihai, “Optimization and analysis for structural parameters of grating moving light modulator,” Acta Opt. Sin. 26, 1121-1126 (2006).

J. Electroceram. (1)

S. Kim, G. Barbastathis, and H. L. Tuller, “MEMS for optical functionality,” J. Electroceram. 12, 133-144 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Opto-Electron. Eng. (1)

Y. Xu, H. Shang lian, and Z. Jie, “Optical analysis and simulation of reflector moving grating light modulator,” Opto-Electron. Eng. 33, 38-42 (2006).

Proc. IEEE (1)

J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, 1552-1574 (1998 ).
[CrossRef]

Proc. SPIE (3)

Z. Jie and F. Hongqiao, “Optical and electrodynamic analysis of a novel spatial light modulator,” Proc. SPIE 5717, 204-210 (2005).
[CrossRef]

L. J. Hornbeck, “Digital light processing TM for high brightness, high-resolution applications,” Proc. SPIE 3013, 27-40 (1997).
[CrossRef]

D. M. Bloom, “The grating light valve: revolutionizing display technology,” Proc. SPIE 3013, 165-171 (1997).
[CrossRef]

Other (4)

H. Tamada, A. Taguchi, and K. Oniki, “High contrast and efficient blazed grating light valve for full-HD 5,000 lumen laser projectors,” 2006 Digest of Technical Papers. International Conference on Consumer Electronics (IEEE, 2006), pp. 133-134.
[CrossRef]

L. N. Guang, Fourier Optics (Mechanics Industry Press, 1988).

Z. Zhihai and H. Shanglian, “Fabrication improvement of the grating light modulator,” in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE, 2006), pp. 1483-1486.

Y. Gengyu, Flat Panel Display Technology (Posts & Telecommunications Press, 2002), pp. 193-196.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Designed model of the single grating light modulator.

Fig. 2
Fig. 2

Top view of the grating light modulator.

Fig. 3
Fig. 3

Simulation result of the single GLM diffraction light distribution when the phase difference is (a)  2 π and (b)  π .

Fig. 4
Fig. 4

Simulation result of the single GLM diffraction light distribution after the surrounding parts were deposited by low reflectivity material. (a) Phase difference is 2 π ; (b) phase difference is π .

Fig. 5
Fig. 5

Simulation result of the 5 × 5 GLM array diffraction light pattern. (a) Phase difference is 2 π ; (b)  phase difference is π ; (c) phase difference is 0.2 π .

Fig. 6
Fig. 6

(a) SEM photograph of the fabricated 2D array grating light modulator and (b) optical photograph of the fabricated 2D array grating light modulator.

Fig. 7
Fig. 7

Diffraction light pattern of the fabricated grating light modulator

Fig. 8
Fig. 8

Projection system based on the GLM.

Fig. 9
Fig. 9

GLM response when actuated by square wave voltage. (a) Frequency of the voltage is 1 kHz ; (b) frequency of the voltage is 5 kHz .

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

U s ( x , y ) = r j λ z exp ( j k z ) exp [ j k 2 z ( x 2 + y 2 ) ] F ˜ [ t s ( x , y ) ] .
t g = [ m = rect ( x md a ) + exp ( j 4 π h λ ) m = rect ( x md d / 2 a ) ] rect ( x W ) rect ( y L ) ,
t p = t 1 + t 2 + t 3 + t 4 = rect ( x + a / 4 W a / 2 ) rect ( y L / 2 a / 2 a ) + rect ( x a / 4 W a / 2 ) rect ( y + L / 2 + a / 2 a ) + rect ( x + W / 2 + a / 2 a ) rect ( y L / 4 a L / 2 ) + rect ( x W / 2 a / 2 a ) rect ( y + L / 4 + a L / 2 ) + rect ( x W / 4 W / 2 a ) rect ( y L / 2 2 a a ) + rect ( x + W / 4 W / 2 a ) rect ( y + L / 2 + 2 a a ) + rect ( x 4 a a ) rect ( y L / 2 5 a / 4 a / 2 ) + rect ( x + 4 a a ) rect ( y + L / 2 + 5 a / 4 a / 2 ) ,
t g = [ rect ( x a ) 1 d comb ( x d ) + exp ( j 4 π h λ ) rect ( x + d / 2 a ) 1 d comb ( x d ) ] rect ( x W ) rect ( y L ) .
T g = F ˜ ( t g ) = a L W d sin c ( L f y ) n = - n = [ 1 + exp ( j 4 π h λ + j n π ) ] sin c ( a n d ) sin c [ W ( f x n d ) ] ,
F ˜ ( t 1 ) = T 1 = ( W a / 2 ) exp [ j 2 π ( a / 4 ) f x + j 2 π ( a / 4 ) f x ] sin c [ ( W a / 2 ) f x ] a exp [ j 2 π ( L / 2 a / 2 ) f y + j 2 π ( L / 2 + a / 2 ) f y ] sin c ( a f y ) = 2 a ( W a / 2 ) cos [ 2 π ( a / 4 ) f x ] cos [ 2 π ( L / 2 + a / 2 ) ] sin c [ ( W a / 2 ) f x ] sin c ( a f y ) .
T s = T g + T p = T g + T 1 + T 2 + T 3 + T 4 = a L W d sin c ( L f y ) n = n = [ 1 + exp ( j 4 π h λ + j n π ) ] sin c ( a n d ) sin c [ W ( f x n d ) ] + 2 a ( W a / 2 ) cos [ 2 π ( a / 4 ) f x ] cos [ 2 π ( L / 2 + a / 2 ) ] sin c [ ( W a / 2 ) f x ] sin c ( a f y ) + 2 a ( L / 2 ) cos [ 2 π ( W / 2 + a / 2 ) f x ] cos [ 2 π ( L / 4 + a ) f y ] sin c [ a f x ] sin c [ ( L / 2 ) f y ] + 2 a ( W / 2 a ) cos [ 2 π ( w / 4 ) f x ] cos [ 2 π ( L / 2 + 2 a ) f y ] sin c [ ( W / 2 a ) f x ] sin c ( a f y ) + 2 a ( a / 2 ) cos [ 2 π ( 4 a ) f x ] cos [ ( L / 2 + 5 a / 4 ) ] sin c ( a f x ) sin c [ ( a / 2 ) f y ] .
I s ( x , y ) = | U s ( x , y ) | 2 = | r λ z T s ( x λ z , y λ z ) | 2 .
t ( x , y ) = [ t s ( x , y ) m = n = δ ( x m d , y n d ) ] rect ( x N x D x ) rect ( y N y D y ) .
t ( x , y ) = t g ( x , y ) [ 1 D x comb ( x D x ) 1 D y comb ( y D y ) ] rect ( x N x D x ) rect ( y N y D y ) .
F ˜ [ t ( x , y ) ] = T ( f x , f y ) = T g ( f x , f y ) comb ( D x f x ) comb ( D y f y ) N x D x N y D y sin c ( N x D x f x ) sin c ( N y D y f y ) | f x = x λ z , f y = y λ z .
T ( f x , f y ) = a L W d sin c ( L f y ) n = n = sin c ( an d ) sin c [ W ( f x n d ) ] [ 1 + exp ( j 4 π h λ + j n π ) ] comb ( D x f x ) comb ( D y f y ) N x D x N y D y sin c ( N x D x f x ) sin c ( N y D y f y ) .
T ( f x , f y ) = a L W d sin c ( L f y ) n = [ 1 + exp ( j 4 h π λ + j n π ) ] sin c ( an d ) sin c [ W ( f x n d ) ] 1 D x D y u = v = δ ( f x u D x ) δ ( f y v D y ) N x D x N y D y sin c ( N x D x f x ) sin c ( N y D y f y ) .
T ( f x , f y ) = a L W N x N y d u = v = { n = [ 1 + exp ( j 4 π h λ + j n π ) ] sin c ( an d ) sin c [ W ( u D x n d ) ] } × sin c ( L v D y ) sin c [ N x D x ( f x u D x ) ] sin c [ N y D y ( f y - v D y ) ] .
I ( x , y ) = ( r λ z ) 2 | T ( x λ z , y λ z ) | 2 .

Metrics