Abstract

The characteristics of directional couplers and power splitters based on three-guide optical couplers in slot waveguide structures are analyzed in detail by a three-dimensional full-vectorial beam propagation method. The numerical results show the achievement of a compact three-guide directional coupler operating as polarization independent with a length of 58.0μm and having almost evenly spaced propagation constants of the three lowest order modes for quasi-TE and quasi-TM modes. Thus, a high coupling efficiency from one outside waveguide to the other outside waveguide is demonstrated and is over 99.5% for both polarization states. For a three-guide power splitter, multiple sets of waveguide parameters for achieving polarization-independent operation are presented. Tolerances to operating wavelength and structural parameters are also analyzed, and the evolution of the injected field along the propagation distance through the proposed devices is demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. Welch, F. A. Kish, R. Nagarajan, C. H. Joyner, R. P. Schneider, V. G. Dominic, M. L. Mitchell, S. G. Grubb, T. K. Chiang, D. Perkins, and A. C. Nilsson, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Lightwave Technol. 24, 4674-4683 (2006).
    [CrossRef]
  2. H. A. Haus and C. G. Fonstad Jr., “Three-waveguide coupler for improved sampling and filtering,” IEEE J. Quantum Electron. QE-17, 2321-2325 (1981).
    [CrossRef]
  3. J. P. Donnelly, N. L. Demeo Jr., and G. A. Ferrante, “Three-guide optical couplers in GaAs,” J. Lightwave Technol. LT-1, 417-424 (1983).
    [CrossRef]
  4. J. P. Donnelly, “Limitations on power-transfer efficiency in three-guide optical coupler,” IEEE J. Quantum Electron. QE-22, 610-616 (1986).
    [CrossRef]
  5. J. P. Donnelly, H. A. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. QE-23, 401-406 (1987).
    [CrossRef]
  6. R. J. Deri, A. Yi-Yan, R. J. Hawkins, and M. Seto, “GaAs/AlGaAs integrated-optic wavelength demultiplexer,” Opt. Lett. 13, 1047-1049 (1988).
    [CrossRef] [PubMed]
  7. Y. Cai, T. Mizumoto, T. Saito, and Y. Naito, “A novel three-guide optical coupler using a taper-formed waveguide,” J. Appl. Phys. 69, 2810-2814 (1991).
    [CrossRef]
  8. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
    [CrossRef]
  9. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600-4615 (2006).
    [CrossRef]
  10. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  11. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining in nanometer-size low-refractive index material,” Opt. Lett. 29, 1626-1628(2004).
    [CrossRef] [PubMed]
  12. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216-5226 (2005).
    [CrossRef] [PubMed]
  13. C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13, 10092-10101 (2005).
    [CrossRef] [PubMed]
  14. T. Fujisawa and M. Koshiba, “Polarization-independent optical directional coupler based on slot waveguides,” Opt. Lett. 31, 56-58 (2006).
    [CrossRef] [PubMed]
  15. T. Fujisawa and M. Koshiba, “Theoretical investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures,” IEEE Photonics Technol. Lett. 18, 1246-1248 (2006).
    [CrossRef]
  16. T. Fujisasw and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide coupler,” J. Opt. Soc. Am. B 23, 684-691 (2006).
    [CrossRef]
  17. F. Dell'Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15, 4977-4993 (2007).
    [CrossRef] [PubMed]
  18. J. Xiao, X. Liu, and X. Sun, “Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures,” Opt. Express 15, 8300-8308 (2007).
    [CrossRef] [PubMed]
  19. J. Xiao and X. Sun, “A modified full-vectorial finite-difference beam propagation method based on H-fields for optical waveguides with step-index profiles,” Opt. Commun. 266, 505-511 (2006).
    [CrossRef]
  20. J. C. Chen and S. Jungling, “Computation of high-order waveguide modes by imaginary-distance beam propagation method,” Opt. Quantum Electron. 26, S199-S205 (1994).
    [CrossRef]
  21. W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639-2649 (1993).
    [CrossRef]
  22. J. Xiao, X. Sun, and M. Zhang, “Vectorial analysis of optical waveguides by the mapped Galerkin method based on E fields,” J. Opt. Soc. Am. B 21, 798-805 (2004).
    [CrossRef]
  23. C. Vassallo, “1993-1995 optical mode solvers,” Opt. Quantum Electron. 29, 95-114 (1997).
    [CrossRef]

2007 (2)

2006 (7)

T. Fujisawa and M. Koshiba, “Theoretical investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures,” IEEE Photonics Technol. Lett. 18, 1246-1248 (2006).
[CrossRef]

J. Xiao and X. Sun, “A modified full-vectorial finite-difference beam propagation method based on H-fields for optical waveguides with step-index profiles,” Opt. Commun. 266, 505-511 (2006).
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, “Polarization-independent optical directional coupler based on slot waveguides,” Opt. Lett. 31, 56-58 (2006).
[CrossRef] [PubMed]

T. Fujisasw and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide coupler,” J. Opt. Soc. Am. B 23, 684-691 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600-4615 (2006).
[CrossRef]

D. F. Welch, F. A. Kish, R. Nagarajan, C. H. Joyner, R. P. Schneider, V. G. Dominic, M. L. Mitchell, S. G. Grubb, T. K. Chiang, D. Perkins, and A. C. Nilsson, “The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems,” J. Lightwave Technol. 24, 4674-4683 (2006).
[CrossRef]

2005 (2)

2004 (3)

1997 (1)

C. Vassallo, “1993-1995 optical mode solvers,” Opt. Quantum Electron. 29, 95-114 (1997).
[CrossRef]

1994 (1)

J. C. Chen and S. Jungling, “Computation of high-order waveguide modes by imaginary-distance beam propagation method,” Opt. Quantum Electron. 26, S199-S205 (1994).
[CrossRef]

1993 (1)

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639-2649 (1993).
[CrossRef]

1991 (1)

Y. Cai, T. Mizumoto, T. Saito, and Y. Naito, “A novel three-guide optical coupler using a taper-formed waveguide,” J. Appl. Phys. 69, 2810-2814 (1991).
[CrossRef]

1988 (1)

1987 (1)

J. P. Donnelly, H. A. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. QE-23, 401-406 (1987).
[CrossRef]

1986 (1)

J. P. Donnelly, “Limitations on power-transfer efficiency in three-guide optical coupler,” IEEE J. Quantum Electron. QE-22, 610-616 (1986).
[CrossRef]

1983 (1)

J. P. Donnelly, N. L. Demeo Jr., and G. A. Ferrante, “Three-guide optical couplers in GaAs,” J. Lightwave Technol. LT-1, 417-424 (1983).
[CrossRef]

1981 (1)

H. A. Haus and C. G. Fonstad Jr., “Three-waveguide coupler for improved sampling and filtering,” IEEE J. Quantum Electron. QE-17, 2321-2325 (1981).
[CrossRef]

Almeida, V. R.

Baehr-Jones, T.

Barrios, C. A.

Cai, Y.

Y. Cai, T. Mizumoto, T. Saito, and Y. Naito, “A novel three-guide optical coupler using a taper-formed waveguide,” J. Appl. Phys. 69, 2810-2814 (1991).
[CrossRef]

Chen, J. C.

J. C. Chen and S. Jungling, “Computation of high-order waveguide modes by imaginary-distance beam propagation method,” Opt. Quantum Electron. 26, S199-S205 (1994).
[CrossRef]

Chiang, T. K.

Dalton, L.

Dell'Olio, F.

Demeo, N. L.

J. P. Donnelly, N. L. Demeo Jr., and G. A. Ferrante, “Three-guide optical couplers in GaAs,” J. Lightwave Technol. LT-1, 417-424 (1983).
[CrossRef]

Deri, R. J.

Dominic, V. G.

Donnelly, J. P.

J. P. Donnelly, H. A. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. QE-23, 401-406 (1987).
[CrossRef]

J. P. Donnelly, “Limitations on power-transfer efficiency in three-guide optical coupler,” IEEE J. Quantum Electron. QE-22, 610-616 (1986).
[CrossRef]

J. P. Donnelly, N. L. Demeo Jr., and G. A. Ferrante, “Three-guide optical couplers in GaAs,” J. Lightwave Technol. LT-1, 417-424 (1983).
[CrossRef]

Fathpour, S.

Ferrante, G. A.

J. P. Donnelly, N. L. Demeo Jr., and G. A. Ferrante, “Three-guide optical couplers in GaAs,” J. Lightwave Technol. LT-1, 417-424 (1983).
[CrossRef]

Fonstad, C. G.

H. A. Haus and C. G. Fonstad Jr., “Three-waveguide coupler for improved sampling and filtering,” IEEE J. Quantum Electron. QE-17, 2321-2325 (1981).
[CrossRef]

Fujisasw, T.

Fujisawa, T.

T. Fujisawa and M. Koshiba, “Theoretical investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures,” IEEE Photonics Technol. Lett. 18, 1246-1248 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, “Polarization-independent optical directional coupler based on slot waveguides,” Opt. Lett. 31, 56-58 (2006).
[CrossRef] [PubMed]

Grubb, S. G.

Haus, H. A.

J. P. Donnelly, H. A. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. QE-23, 401-406 (1987).
[CrossRef]

H. A. Haus and C. G. Fonstad Jr., “Three-waveguide coupler for improved sampling and filtering,” IEEE J. Quantum Electron. QE-17, 2321-2325 (1981).
[CrossRef]

Hawkins, R. J.

Hochberg, M.

Huang, W. P.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639-2649 (1993).
[CrossRef]

Jalali, B.

Jen, A. K. Y.

Joyner, C. H.

Jungling, S.

J. C. Chen and S. Jungling, “Computation of high-order waveguide modes by imaginary-distance beam propagation method,” Opt. Quantum Electron. 26, S199-S205 (1994).
[CrossRef]

Kish, F. A.

Koshiba, M.

T. Fujisawa and M. Koshiba, “Theoretical investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures,” IEEE Photonics Technol. Lett. 18, 1246-1248 (2006).
[CrossRef]

T. Fujisasw and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide coupler,” J. Opt. Soc. Am. B 23, 684-691 (2006).
[CrossRef]

T. Fujisawa and M. Koshiba, “Polarization-independent optical directional coupler based on slot waveguides,” Opt. Lett. 31, 56-58 (2006).
[CrossRef] [PubMed]

Lawson, R.

Liao, Y.

Lipson, M.

Liu, X.

Mitchell, M. L.

Mizumoto, T.

Y. Cai, T. Mizumoto, T. Saito, and Y. Naito, “A novel three-guide optical coupler using a taper-formed waveguide,” J. Appl. Phys. 69, 2810-2814 (1991).
[CrossRef]

Nagarajan, R.

Naito, Y.

Y. Cai, T. Mizumoto, T. Saito, and Y. Naito, “A novel three-guide optical coupler using a taper-formed waveguide,” J. Appl. Phys. 69, 2810-2814 (1991).
[CrossRef]

Nilsson, A. C.

Panepucci, R. R.

Passaro, V. M. N.

Perkins, D.

Saito, T.

Y. Cai, T. Mizumoto, T. Saito, and Y. Naito, “A novel three-guide optical coupler using a taper-formed waveguide,” J. Appl. Phys. 69, 2810-2814 (1991).
[CrossRef]

Scherer, A.

Schneider, R. P.

Seto, M.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

Sullivan, P. A.

Sun, X.

Vassallo, C.

C. Vassallo, “1993-1995 optical mode solvers,” Opt. Quantum Electron. 29, 95-114 (1997).
[CrossRef]

Wang, G.

Welch, D. F.

Whitaker, N.

J. P. Donnelly, H. A. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. QE-23, 401-406 (1987).
[CrossRef]

Xiao, J.

Xu, C. L.

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639-2649 (1993).
[CrossRef]

Xu, Q.

Yi-Yan, A.

Zhang, M.

IEEE J. Quantum Electron. (4)

J. P. Donnelly, “Limitations on power-transfer efficiency in three-guide optical coupler,” IEEE J. Quantum Electron. QE-22, 610-616 (1986).
[CrossRef]

J. P. Donnelly, H. A. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. QE-23, 401-406 (1987).
[CrossRef]

H. A. Haus and C. G. Fonstad Jr., “Three-waveguide coupler for improved sampling and filtering,” IEEE J. Quantum Electron. QE-17, 2321-2325 (1981).
[CrossRef]

W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639-2649 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. Fujisawa and M. Koshiba, “Theoretical investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures,” IEEE Photonics Technol. Lett. 18, 1246-1248 (2006).
[CrossRef]

J. Appl. Phys. (1)

Y. Cai, T. Mizumoto, T. Saito, and Y. Naito, “A novel three-guide optical coupler using a taper-formed waveguide,” J. Appl. Phys. 69, 2810-2814 (1991).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

J. Xiao and X. Sun, “A modified full-vectorial finite-difference beam propagation method based on H-fields for optical waveguides with step-index profiles,” Opt. Commun. 266, 505-511 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Opt. Quantum Electron. (2)

C. Vassallo, “1993-1995 optical mode solvers,” Opt. Quantum Electron. 29, 95-114 (1997).
[CrossRef]

J. C. Chen and S. Jungling, “Computation of high-order waveguide modes by imaginary-distance beam propagation method,” Opt. Quantum Electron. 26, S199-S205 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Cross section of the three-guide optical coupler in slot waveguide structures.

Fig. 2
Fig. 2

Effective indices of the three lowest order modes for (a) quasi-TE and (b) quasi-TM modes as a function of the waveguide spacing.

Fig. 3
Fig. 3

Field distributions of the major components for the three lowest order modes: (a) TE0, (b) TE1, (c) TE2, (d) TM0, (e) TM1, and (f) TM2 modes.

Fig. 4
Fig. 4

Schematic layout of the three-guide optical coupler used as (a) directional coupler and (b) power splitter.

Fig. 5
Fig. 5

Coupling lengths of the direction coupler as a function of the waveguide spacing for (a) quasi-TE and (b) quasi-TM modes.

Fig. 6
Fig. 6

Coupling lengths (a)  l c 1 and (b)  l c 2 of the direction coupler as a function of the refractive index in slot region.

Fig. 7
Fig. 7

Coupling lengths of the direction coupler as a function of the refractive index in slot region for the (a) center and (b) outside waveguide.

Fig. 8
Fig. 8

Coupling efficiency of the direction coupler as functions of (a) length, (b) waveguide spacing, (c) refractive index, (d) height of the slot regions, (e) height of the photonic wire, and (f) wavelength.

Fig. 9
Fig. 9

Evolution of the injected field along the propagation distance through the directional coupler for quasi-TE mode.

Fig. 10
Fig. 10

Evolution of the injected field along the propagation distance through the directional coupler for quasi-TM mode.

Fig. 11
Fig. 11

Coupling lengths of the power splitter as a function of the refractive index in slot region.

Fig. 12
Fig. 12

Waveguide parameters to achieve polarization-independent operation for the power splitter.

Fig. 13
Fig. 13

Evolution of the injected field along the propagation distance through the power splitter: (a), (b), and (c) for quasi-TE mode; (d), (e), and (f) for quasi-TM mode.

Fig. 14
Fig. 14

Geometry of an optical rib waveguide.

Tables (1)

Tables Icon

Table 1 Normalized Propagation Constant for an Optical Rib Waveguide Computed by Different Methods

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

L DC = l c 1 TE = l c 2 TE = l c 1 TM = l c 2 TM ,
l c 1 TE = π β 0 TE β 1 TE ,
l c 2 TE = π β 1 TE β 2 TE ,
l c 1 TM = π β 0 TM β 1 TM ,
l c 2 TM = π β 1 TM β 2 TM ,
l c = π β 0 β 2 ,

Metrics