Abstract

An analytical model has been developed and applied to explore the limits in the design of a highly miniaturized planar optical microspectrometer based on an imaging diffraction grating. This design tool has been validated as providing the smallest possible dimensions while maintaining acceptable spectral resolution. The resulting planar spectrometer is composed of two parallel glass plates, which contain all components of the device, including a reflective slit and an imaging diffraction grating. Fabrication is based on microelectromechanical system technology and starts with a single glass wafer; IC-compatible deposition and lithography are applied to realize the parts in aluminum, which makes the microspectrometer highly tolerant for component mismatch. The fabricated spectrometer was mounted directly on top of an image sensor and takes up a volume of only 50mm3. The measured spectral resolution of 6nm (FWHM) in the 100nm operating wavelength range (600700nm) is in agreement with a model calculation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription