Abstract

We have investigated the detection of mechanical and disease stresses in citrus plants (Citrus limonia [L.] Osbeck) using laser-induced fluorescence spectroscopy. Due to its economic importance we have chosen to investigate the citrus canker disease, which is caused by the Xanthomonas axonopodis pv. citri bacteria. Mechanical stress was also studied because it plays an important role in the plant’s infection by such bacteria. A laser-induced fluorescence spectroscopy system, composed of a spectrometer and a 532nm 10mW excitation laser was used to perform fluorescence spectroscopy. The ratio of two chlorophyll fluorescence bands allows us to detect and discriminate between mechanical and disease stresses. This ability to discriminate may have an important application in the field to detect citrus canker infected trees.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Penuelas and I. Filella, “Visible and near-infrared reflectance techniques for diagnosing plant physiological status,” Trends Plant Sci. 3, 151-156 (1998).
  2. T. Yahraus, S. Chandra, L. Legendre, and P. S. Low, “Evidence for a mechanically induced oxidative burst,” Plant Physiol. 109, 1259-1266 (1995).
  3. R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote-sensing of Chlorophyll-A fluorescence of vegetation canopies. 2. physiological significance of fluorescence signal response to environmental stresses,” Remote Sens. Environ. 47, 29-35 (1994).
  4. Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie. 19, 543-578(1999).
  5. C. Buschmann and H. K. Lichtenthaler, “Principles and characteristics of multi-colour fluorescence imaging of plants,” J. Plant Physiol. 152, 297-314 (1998).
  6. H. K. Lichtenthaler and J. A. Miehé, “Fluorescence imaging as a diagnostic tool for plant stress,” Trends Plant Sci. 2, 316-320 (1997).
  7. B. Genty, J. M. Briantais, and N. R. Baker, “The relationship between the quantum yield of photosynthetic electron-transport and quenching of Chlorophyll fluorescence,” Biochim. Biophys. Acta 990, 87-92 (1989).
  8. G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis--the basics,” Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 313-349 (1991).
  9. Govindjee, “63 years since Kautsky--Chlorophyll A fluorescence,” Australian. J. Plant Physiol. 22, 131-160 (1995).
  10. A. F. Theisen, “Fluorescent changes of a drying maple leaf observed in the visible and near-infrared,” in Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing, H. K. Lichtenthaler, ed. (Kluwer Academic, 1988) p. 197.
  11. M. Broglia, “Blue-green laser-induced fluorescence from intact leaves: actinic light sensitivity and subcellular origins,” Appl. Opt. 32, 334-338 (1993).
  12. E. W. Chappelle, F. M. Wood, J. E. McMurtrey, and W. W. Newcomb, “Laser-induced fluorescence of green plants. 1: A technique for the remote detection of plant stress and species differentiation,” Appl. Opt. 23, 134-138 (1984).
  13. J. Cervantes-Martinez, R. Flores-Hernandez, B. Rodriguez-Garay, and F. Santacruz-Ruvalcaba, “Detection of bacterial infection of agave plants by laser-induced fluorescence,” Appl. Opt. 41, 2541-2545 (2002).
    [CrossRef]
  14. T. R. Gottwald, J. H. Graham, and T. S. Schubert, “Citrus canker: the pathogen and its impact,” Plant Health Progress, doi:, (2002), http://www.plantmanagementnetwork.org/php.
    [CrossRef]
  15. J. H Graham and R. P. Leite Jr., “Lack of control of citrus canker by induced systemic resistance compounds,” Plant Disease 88, 745-750 (2004).
  16. E. C. Lins, F. D. Nunes, M. C.G. Gasparato, J. Belasque Jr., V. S. Bagnato, and L. G. Marcassa, “Fluorescence spectroscopy to detect water stress in orange trees,” in Proceedings of IEEE Conference on Microwave and Optoelectronics (IEEE, 2005), pp. 534-537.
  17. L. G. Marcassa, M. C. G. Gasparoto, J. Belasque Jr., E. C. Lins, F. D. Nunes, and V. S. Bagnato, Laser Phys. 16, 884 (2006).
    [CrossRef]
  18. T. Hildmann, M. Ebneth, H. Pena-Cortes, J. J. Sanchez-Serrano, L. Willmitzer, and S. Prat, Plant Cell Physiol. 4, 1157 (1992).
  19. L. Taiz and E. Zeiger, Plant Physiology (Sinauer, 2002) p. 690.
  20. P. Wick, X. Gansel, C. Oulevey, V. Page, I. Studer, M. Dürst, and L. Sticher, “The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation,” Plant Physiol. 132, 343-351 (2003).
    [CrossRef]
  21. K. Maleck and R. A. Dietrich, “Defense on multiple fronts: how do plants cope with diverse enemies?,” Trends Plant Sci. 4, 215-219 (1999).
  22. G. N. Agrios., Plant Pathology (Academic, (1997) p. 635.
  23. R. N. Goodman, The Biochemistry and Physiology of Plant Disease (University of Missouri Press, 1986) p. 433.
  24. M. Goto, Fundamentals of Bacterial Plant Pathology (Academic, 1990) p. 342.
  25. T. R. Gottwald and J. H. Graham, “A device for precise and nondisruptive stomatal inoculation of leaf tissue with bacterial pathogens,” Phytopathology 82, 930-935 (1992).
    [CrossRef]
  26. C. J. Verniere, T. R. Gottwald, and O. Pruvost, “Disease development and symptom expression of /Xanthomonas axonopodis/ pv. /citri/ in various citrus plant tissues,” Phytopathology 93, 832-843 (2003).
    [CrossRef]

2006 (1)

L. G. Marcassa, M. C. G. Gasparoto, J. Belasque Jr., E. C. Lins, F. D. Nunes, and V. S. Bagnato, Laser Phys. 16, 884 (2006).
[CrossRef]

2004 (1)

J. H Graham and R. P. Leite Jr., “Lack of control of citrus canker by induced systemic resistance compounds,” Plant Disease 88, 745-750 (2004).

2003 (2)

C. J. Verniere, T. R. Gottwald, and O. Pruvost, “Disease development and symptom expression of /Xanthomonas axonopodis/ pv. /citri/ in various citrus plant tissues,” Phytopathology 93, 832-843 (2003).
[CrossRef]

P. Wick, X. Gansel, C. Oulevey, V. Page, I. Studer, M. Dürst, and L. Sticher, “The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation,” Plant Physiol. 132, 343-351 (2003).
[CrossRef]

2002 (1)

1999 (2)

K. Maleck and R. A. Dietrich, “Defense on multiple fronts: how do plants cope with diverse enemies?,” Trends Plant Sci. 4, 215-219 (1999).

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie. 19, 543-578(1999).

1998 (2)

C. Buschmann and H. K. Lichtenthaler, “Principles and characteristics of multi-colour fluorescence imaging of plants,” J. Plant Physiol. 152, 297-314 (1998).

J. Penuelas and I. Filella, “Visible and near-infrared reflectance techniques for diagnosing plant physiological status,” Trends Plant Sci. 3, 151-156 (1998).

1997 (1)

H. K. Lichtenthaler and J. A. Miehé, “Fluorescence imaging as a diagnostic tool for plant stress,” Trends Plant Sci. 2, 316-320 (1997).

1995 (2)

T. Yahraus, S. Chandra, L. Legendre, and P. S. Low, “Evidence for a mechanically induced oxidative burst,” Plant Physiol. 109, 1259-1266 (1995).

Govindjee, “63 years since Kautsky--Chlorophyll A fluorescence,” Australian. J. Plant Physiol. 22, 131-160 (1995).

1994 (1)

R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote-sensing of Chlorophyll-A fluorescence of vegetation canopies. 2. physiological significance of fluorescence signal response to environmental stresses,” Remote Sens. Environ. 47, 29-35 (1994).

1993 (1)

1992 (2)

T. R. Gottwald and J. H. Graham, “A device for precise and nondisruptive stomatal inoculation of leaf tissue with bacterial pathogens,” Phytopathology 82, 930-935 (1992).
[CrossRef]

T. Hildmann, M. Ebneth, H. Pena-Cortes, J. J. Sanchez-Serrano, L. Willmitzer, and S. Prat, Plant Cell Physiol. 4, 1157 (1992).

1991 (1)

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis--the basics,” Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 313-349 (1991).

1989 (1)

B. Genty, J. M. Briantais, and N. R. Baker, “The relationship between the quantum yield of photosynthetic electron-transport and quenching of Chlorophyll fluorescence,” Biochim. Biophys. Acta 990, 87-92 (1989).

1984 (1)

Agati, G.

R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote-sensing of Chlorophyll-A fluorescence of vegetation canopies. 2. physiological significance of fluorescence signal response to environmental stresses,” Remote Sens. Environ. 47, 29-35 (1994).

Agrios., G. N.

G. N. Agrios., Plant Pathology (Academic, (1997) p. 635.

Bagnato, V. S.

L. G. Marcassa, M. C. G. Gasparoto, J. Belasque Jr., E. C. Lins, F. D. Nunes, and V. S. Bagnato, Laser Phys. 16, 884 (2006).
[CrossRef]

E. C. Lins, F. D. Nunes, M. C.G. Gasparato, J. Belasque Jr., V. S. Bagnato, and L. G. Marcassa, “Fluorescence spectroscopy to detect water stress in orange trees,” in Proceedings of IEEE Conference on Microwave and Optoelectronics (IEEE, 2005), pp. 534-537.

Baker, N. R.

B. Genty, J. M. Briantais, and N. R. Baker, “The relationship between the quantum yield of photosynthetic electron-transport and quenching of Chlorophyll fluorescence,” Biochim. Biophys. Acta 990, 87-92 (1989).

Bazzani, M.

R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote-sensing of Chlorophyll-A fluorescence of vegetation canopies. 2. physiological significance of fluorescence signal response to environmental stresses,” Remote Sens. Environ. 47, 29-35 (1994).

Belasque, J.

L. G. Marcassa, M. C. G. Gasparoto, J. Belasque Jr., E. C. Lins, F. D. Nunes, and V. S. Bagnato, Laser Phys. 16, 884 (2006).
[CrossRef]

E. C. Lins, F. D. Nunes, M. C.G. Gasparato, J. Belasque Jr., V. S. Bagnato, and L. G. Marcassa, “Fluorescence spectroscopy to detect water stress in orange trees,” in Proceedings of IEEE Conference on Microwave and Optoelectronics (IEEE, 2005), pp. 534-537.

Briantais, J. M.

B. Genty, J. M. Briantais, and N. R. Baker, “The relationship between the quantum yield of photosynthetic electron-transport and quenching of Chlorophyll fluorescence,” Biochim. Biophys. Acta 990, 87-92 (1989).

Broglia, M.

Buschmann, C.

C. Buschmann and H. K. Lichtenthaler, “Principles and characteristics of multi-colour fluorescence imaging of plants,” J. Plant Physiol. 152, 297-314 (1998).

Cecchi, G.

R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote-sensing of Chlorophyll-A fluorescence of vegetation canopies. 2. physiological significance of fluorescence signal response to environmental stresses,” Remote Sens. Environ. 47, 29-35 (1994).

Cerovic, Z. G.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie. 19, 543-578(1999).

Cervantes-Martinez, J.

Chandra, S.

T. Yahraus, S. Chandra, L. Legendre, and P. S. Low, “Evidence for a mechanically induced oxidative burst,” Plant Physiol. 109, 1259-1266 (1995).

Chappelle, E. W.

Deangelis, P.

R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote-sensing of Chlorophyll-A fluorescence of vegetation canopies. 2. physiological significance of fluorescence signal response to environmental stresses,” Remote Sens. Environ. 47, 29-35 (1994).

Dietrich, R. A.

K. Maleck and R. A. Dietrich, “Defense on multiple fronts: how do plants cope with diverse enemies?,” Trends Plant Sci. 4, 215-219 (1999).

Dürst, M.

P. Wick, X. Gansel, C. Oulevey, V. Page, I. Studer, M. Dürst, and L. Sticher, “The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation,” Plant Physiol. 132, 343-351 (2003).
[CrossRef]

Ebneth, M.

T. Hildmann, M. Ebneth, H. Pena-Cortes, J. J. Sanchez-Serrano, L. Willmitzer, and S. Prat, Plant Cell Physiol. 4, 1157 (1992).

Filella, I.

J. Penuelas and I. Filella, “Visible and near-infrared reflectance techniques for diagnosing plant physiological status,” Trends Plant Sci. 3, 151-156 (1998).

Flores-Hernandez, R.

Fusi, F.

R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote-sensing of Chlorophyll-A fluorescence of vegetation canopies. 2. physiological significance of fluorescence signal response to environmental stresses,” Remote Sens. Environ. 47, 29-35 (1994).

Gansel, X.

P. Wick, X. Gansel, C. Oulevey, V. Page, I. Studer, M. Dürst, and L. Sticher, “The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation,” Plant Physiol. 132, 343-351 (2003).
[CrossRef]

Gasparato, M. C.G.

E. C. Lins, F. D. Nunes, M. C.G. Gasparato, J. Belasque Jr., V. S. Bagnato, and L. G. Marcassa, “Fluorescence spectroscopy to detect water stress in orange trees,” in Proceedings of IEEE Conference on Microwave and Optoelectronics (IEEE, 2005), pp. 534-537.

Gasparoto, M. C. G.

L. G. Marcassa, M. C. G. Gasparoto, J. Belasque Jr., E. C. Lins, F. D. Nunes, and V. S. Bagnato, Laser Phys. 16, 884 (2006).
[CrossRef]

Genty, B.

B. Genty, J. M. Briantais, and N. R. Baker, “The relationship between the quantum yield of photosynthetic electron-transport and quenching of Chlorophyll fluorescence,” Biochim. Biophys. Acta 990, 87-92 (1989).

Goodman, R. N.

R. N. Goodman, The Biochemistry and Physiology of Plant Disease (University of Missouri Press, 1986) p. 433.

Goto, M.

M. Goto, Fundamentals of Bacterial Plant Pathology (Academic, 1990) p. 342.

Gottwald, T. R.

C. J. Verniere, T. R. Gottwald, and O. Pruvost, “Disease development and symptom expression of /Xanthomonas axonopodis/ pv. /citri/ in various citrus plant tissues,” Phytopathology 93, 832-843 (2003).
[CrossRef]

T. R. Gottwald and J. H. Graham, “A device for precise and nondisruptive stomatal inoculation of leaf tissue with bacterial pathogens,” Phytopathology 82, 930-935 (1992).
[CrossRef]

T. R. Gottwald, J. H. Graham, and T. S. Schubert, “Citrus canker: the pathogen and its impact,” Plant Health Progress, doi:, (2002), http://www.plantmanagementnetwork.org/php.
[CrossRef]

Govindjee,

Govindjee, “63 years since Kautsky--Chlorophyll A fluorescence,” Australian. J. Plant Physiol. 22, 131-160 (1995).

Graham, J. H

J. H Graham and R. P. Leite Jr., “Lack of control of citrus canker by induced systemic resistance compounds,” Plant Disease 88, 745-750 (2004).

Graham, J. H.

T. R. Gottwald and J. H. Graham, “A device for precise and nondisruptive stomatal inoculation of leaf tissue with bacterial pathogens,” Phytopathology 82, 930-935 (1992).
[CrossRef]

T. R. Gottwald, J. H. Graham, and T. S. Schubert, “Citrus canker: the pathogen and its impact,” Plant Health Progress, doi:, (2002), http://www.plantmanagementnetwork.org/php.
[CrossRef]

Hildmann, T.

T. Hildmann, M. Ebneth, H. Pena-Cortes, J. J. Sanchez-Serrano, L. Willmitzer, and S. Prat, Plant Cell Physiol. 4, 1157 (1992).

Krause, G. H.

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis--the basics,” Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 313-349 (1991).

Legendre, L.

T. Yahraus, S. Chandra, L. Legendre, and P. S. Low, “Evidence for a mechanically induced oxidative burst,” Plant Physiol. 109, 1259-1266 (1995).

Leite, R. P.

J. H Graham and R. P. Leite Jr., “Lack of control of citrus canker by induced systemic resistance compounds,” Plant Disease 88, 745-750 (2004).

Lichtenthaler, H. K.

C. Buschmann and H. K. Lichtenthaler, “Principles and characteristics of multi-colour fluorescence imaging of plants,” J. Plant Physiol. 152, 297-314 (1998).

H. K. Lichtenthaler and J. A. Miehé, “Fluorescence imaging as a diagnostic tool for plant stress,” Trends Plant Sci. 2, 316-320 (1997).

Lins, E. C.

L. G. Marcassa, M. C. G. Gasparoto, J. Belasque Jr., E. C. Lins, F. D. Nunes, and V. S. Bagnato, Laser Phys. 16, 884 (2006).
[CrossRef]

E. C. Lins, F. D. Nunes, M. C.G. Gasparato, J. Belasque Jr., V. S. Bagnato, and L. G. Marcassa, “Fluorescence spectroscopy to detect water stress in orange trees,” in Proceedings of IEEE Conference on Microwave and Optoelectronics (IEEE, 2005), pp. 534-537.

Low, P. S.

T. Yahraus, S. Chandra, L. Legendre, and P. S. Low, “Evidence for a mechanically induced oxidative burst,” Plant Physiol. 109, 1259-1266 (1995).

Maleck, K.

K. Maleck and R. A. Dietrich, “Defense on multiple fronts: how do plants cope with diverse enemies?,” Trends Plant Sci. 4, 215-219 (1999).

Marcassa, L. G.

L. G. Marcassa, M. C. G. Gasparoto, J. Belasque Jr., E. C. Lins, F. D. Nunes, and V. S. Bagnato, Laser Phys. 16, 884 (2006).
[CrossRef]

E. C. Lins, F. D. Nunes, M. C.G. Gasparato, J. Belasque Jr., V. S. Bagnato, and L. G. Marcassa, “Fluorescence spectroscopy to detect water stress in orange trees,” in Proceedings of IEEE Conference on Microwave and Optoelectronics (IEEE, 2005), pp. 534-537.

Matteucci, G.

R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote-sensing of Chlorophyll-A fluorescence of vegetation canopies. 2. physiological significance of fluorescence signal response to environmental stresses,” Remote Sens. Environ. 47, 29-35 (1994).

Mazzinghi, P.

R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote-sensing of Chlorophyll-A fluorescence of vegetation canopies. 2. physiological significance of fluorescence signal response to environmental stresses,” Remote Sens. Environ. 47, 29-35 (1994).

McMurtrey, J. E.

Miehé, J. A.

H. K. Lichtenthaler and J. A. Miehé, “Fluorescence imaging as a diagnostic tool for plant stress,” Trends Plant Sci. 2, 316-320 (1997).

Morales, F.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie. 19, 543-578(1999).

Moya, I.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie. 19, 543-578(1999).

Mugnozza, G. S.

R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote-sensing of Chlorophyll-A fluorescence of vegetation canopies. 2. physiological significance of fluorescence signal response to environmental stresses,” Remote Sens. Environ. 47, 29-35 (1994).

Newcomb, W. W.

Nunes, F. D.

L. G. Marcassa, M. C. G. Gasparoto, J. Belasque Jr., E. C. Lins, F. D. Nunes, and V. S. Bagnato, Laser Phys. 16, 884 (2006).
[CrossRef]

E. C. Lins, F. D. Nunes, M. C.G. Gasparato, J. Belasque Jr., V. S. Bagnato, and L. G. Marcassa, “Fluorescence spectroscopy to detect water stress in orange trees,” in Proceedings of IEEE Conference on Microwave and Optoelectronics (IEEE, 2005), pp. 534-537.

Oulevey, C.

P. Wick, X. Gansel, C. Oulevey, V. Page, I. Studer, M. Dürst, and L. Sticher, “The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation,” Plant Physiol. 132, 343-351 (2003).
[CrossRef]

Page, V.

P. Wick, X. Gansel, C. Oulevey, V. Page, I. Studer, M. Dürst, and L. Sticher, “The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation,” Plant Physiol. 132, 343-351 (2003).
[CrossRef]

Pena-Cortes, H.

T. Hildmann, M. Ebneth, H. Pena-Cortes, J. J. Sanchez-Serrano, L. Willmitzer, and S. Prat, Plant Cell Physiol. 4, 1157 (1992).

Penuelas, J.

J. Penuelas and I. Filella, “Visible and near-infrared reflectance techniques for diagnosing plant physiological status,” Trends Plant Sci. 3, 151-156 (1998).

Prat, S.

T. Hildmann, M. Ebneth, H. Pena-Cortes, J. J. Sanchez-Serrano, L. Willmitzer, and S. Prat, Plant Cell Physiol. 4, 1157 (1992).

Pruvost, O.

C. J. Verniere, T. R. Gottwald, and O. Pruvost, “Disease development and symptom expression of /Xanthomonas axonopodis/ pv. /citri/ in various citrus plant tissues,” Phytopathology 93, 832-843 (2003).
[CrossRef]

Raimondi, V.

R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote-sensing of Chlorophyll-A fluorescence of vegetation canopies. 2. physiological significance of fluorescence signal response to environmental stresses,” Remote Sens. Environ. 47, 29-35 (1994).

Rodriguez-Garay, B.

Samson, G.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie. 19, 543-578(1999).

Sanchez-Serrano, J. J.

T. Hildmann, M. Ebneth, H. Pena-Cortes, J. J. Sanchez-Serrano, L. Willmitzer, and S. Prat, Plant Cell Physiol. 4, 1157 (1992).

Santacruz-Ruvalcaba, F.

Schubert, T. S.

T. R. Gottwald, J. H. Graham, and T. S. Schubert, “Citrus canker: the pathogen and its impact,” Plant Health Progress, doi:, (2002), http://www.plantmanagementnetwork.org/php.
[CrossRef]

Sticher, L.

P. Wick, X. Gansel, C. Oulevey, V. Page, I. Studer, M. Dürst, and L. Sticher, “The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation,” Plant Physiol. 132, 343-351 (2003).
[CrossRef]

Studer, I.

P. Wick, X. Gansel, C. Oulevey, V. Page, I. Studer, M. Dürst, and L. Sticher, “The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation,” Plant Physiol. 132, 343-351 (2003).
[CrossRef]

Taiz, L.

L. Taiz and E. Zeiger, Plant Physiology (Sinauer, 2002) p. 690.

Theisen, A. F.

A. F. Theisen, “Fluorescent changes of a drying maple leaf observed in the visible and near-infrared,” in Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing, H. K. Lichtenthaler, ed. (Kluwer Academic, 1988) p. 197.

Tremblay, N.

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie. 19, 543-578(1999).

Valentini, R.

R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote-sensing of Chlorophyll-A fluorescence of vegetation canopies. 2. physiological significance of fluorescence signal response to environmental stresses,” Remote Sens. Environ. 47, 29-35 (1994).

Verniere, C. J.

C. J. Verniere, T. R. Gottwald, and O. Pruvost, “Disease development and symptom expression of /Xanthomonas axonopodis/ pv. /citri/ in various citrus plant tissues,” Phytopathology 93, 832-843 (2003).
[CrossRef]

Weis, E.

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis--the basics,” Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 313-349 (1991).

Wick, P.

P. Wick, X. Gansel, C. Oulevey, V. Page, I. Studer, M. Dürst, and L. Sticher, “The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation,” Plant Physiol. 132, 343-351 (2003).
[CrossRef]

Willmitzer, L.

T. Hildmann, M. Ebneth, H. Pena-Cortes, J. J. Sanchez-Serrano, L. Willmitzer, and S. Prat, Plant Cell Physiol. 4, 1157 (1992).

Wood, F. M.

Yahraus, T.

T. Yahraus, S. Chandra, L. Legendre, and P. S. Low, “Evidence for a mechanically induced oxidative burst,” Plant Physiol. 109, 1259-1266 (1995).

Zeiger, E.

L. Taiz and E. Zeiger, Plant Physiology (Sinauer, 2002) p. 690.

Agronomie. (1)

Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, “Ultraviolet-induced fluorescence for plant monitoring: present state and prospects,” Agronomie. 19, 543-578(1999).

Ann. Rev. Plant Physiol. Plant Mol. Biol. (1)

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis--the basics,” Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 313-349 (1991).

Appl. Opt. (3)

Australian. J. Plant Physiol. (1)

Govindjee, “63 years since Kautsky--Chlorophyll A fluorescence,” Australian. J. Plant Physiol. 22, 131-160 (1995).

Biochim. Biophys. Acta (1)

B. Genty, J. M. Briantais, and N. R. Baker, “The relationship between the quantum yield of photosynthetic electron-transport and quenching of Chlorophyll fluorescence,” Biochim. Biophys. Acta 990, 87-92 (1989).

J. Plant Physiol. (1)

C. Buschmann and H. K. Lichtenthaler, “Principles and characteristics of multi-colour fluorescence imaging of plants,” J. Plant Physiol. 152, 297-314 (1998).

Laser Phys. (1)

L. G. Marcassa, M. C. G. Gasparoto, J. Belasque Jr., E. C. Lins, F. D. Nunes, and V. S. Bagnato, Laser Phys. 16, 884 (2006).
[CrossRef]

Phytopathology (2)

T. R. Gottwald and J. H. Graham, “A device for precise and nondisruptive stomatal inoculation of leaf tissue with bacterial pathogens,” Phytopathology 82, 930-935 (1992).
[CrossRef]

C. J. Verniere, T. R. Gottwald, and O. Pruvost, “Disease development and symptom expression of /Xanthomonas axonopodis/ pv. /citri/ in various citrus plant tissues,” Phytopathology 93, 832-843 (2003).
[CrossRef]

Plant Cell Physiol. (1)

T. Hildmann, M. Ebneth, H. Pena-Cortes, J. J. Sanchez-Serrano, L. Willmitzer, and S. Prat, Plant Cell Physiol. 4, 1157 (1992).

Plant Disease (1)

J. H Graham and R. P. Leite Jr., “Lack of control of citrus canker by induced systemic resistance compounds,” Plant Disease 88, 745-750 (2004).

Plant Physiol. (2)

T. Yahraus, S. Chandra, L. Legendre, and P. S. Low, “Evidence for a mechanically induced oxidative burst,” Plant Physiol. 109, 1259-1266 (1995).

P. Wick, X. Gansel, C. Oulevey, V. Page, I. Studer, M. Dürst, and L. Sticher, “The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation,” Plant Physiol. 132, 343-351 (2003).
[CrossRef]

Remote Sens. Environ. (1)

R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, “Remote-sensing of Chlorophyll-A fluorescence of vegetation canopies. 2. physiological significance of fluorescence signal response to environmental stresses,” Remote Sens. Environ. 47, 29-35 (1994).

Trends Plant Sci. (3)

H. K. Lichtenthaler and J. A. Miehé, “Fluorescence imaging as a diagnostic tool for plant stress,” Trends Plant Sci. 2, 316-320 (1997).

J. Penuelas and I. Filella, “Visible and near-infrared reflectance techniques for diagnosing plant physiological status,” Trends Plant Sci. 3, 151-156 (1998).

K. Maleck and R. A. Dietrich, “Defense on multiple fronts: how do plants cope with diverse enemies?,” Trends Plant Sci. 4, 215-219 (1999).

Other (7)

G. N. Agrios., Plant Pathology (Academic, (1997) p. 635.

R. N. Goodman, The Biochemistry and Physiology of Plant Disease (University of Missouri Press, 1986) p. 433.

M. Goto, Fundamentals of Bacterial Plant Pathology (Academic, 1990) p. 342.

A. F. Theisen, “Fluorescent changes of a drying maple leaf observed in the visible and near-infrared,” in Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing, H. K. Lichtenthaler, ed. (Kluwer Academic, 1988) p. 197.

E. C. Lins, F. D. Nunes, M. C.G. Gasparato, J. Belasque Jr., V. S. Bagnato, and L. G. Marcassa, “Fluorescence spectroscopy to detect water stress in orange trees,” in Proceedings of IEEE Conference on Microwave and Optoelectronics (IEEE, 2005), pp. 534-537.

L. Taiz and E. Zeiger, Plant Physiology (Sinauer, 2002) p. 690.

T. R. Gottwald, J. H. Graham, and T. S. Schubert, “Citrus canker: the pathogen and its impact,” Plant Health Progress, doi:, (2002), http://www.plantmanagementnetwork.org/php.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Typical fluorescence spectrum of an orange leaf for excitation at 532 nm .

Fig. 2
Fig. 2

(a) FR/FRF ratio and (b) FM as a function of time after inoculation for citrus plants (Citrus limonia [L.] Osbeck). Health (solid square) leaves without mechanical stress (control), (solid circle) health leaves with mechanical stress, (solid triangle) citrus canker infected leaves without mechanical stress, (solid inverted triangle) citrus canker infected leaves with mechanical stress.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FM = 680 712 I ( λ ) d λ 712 750 I ( λ ) d λ ,

Metrics