Abstract

We investigate the possible application of a modified deoxyribonucleic acid (DNA)-dye system for dynamic processing of optical information, e.g., optical correlation. The system consists of a biopolymeric matrix made of DNA substituted with the cationic surfactant molecule cetyltrimethyl-ammonium chloride (CTMA) and doped with a photochromic Disperse Red 1 dye. Fast dynamics (millisecond range of rise and fall times) of output correlation signal formation was measured in a joint Fourier transform optical correlator experimental setup. Full reversibility of the correlation signal and reproducibility were observed even after long-time exposures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsins,” Annu. Rev. Phys. Chem. 41, 683-733(1990).
    [CrossRef] [PubMed]
  2. K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addressed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002).
    [CrossRef]
  3. G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100, 1741-1753 (2000).
    [CrossRef]
  4. E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Sci. Tools: LKB Instrum. J. 72, 1810-1816 (2001).
  5. A. Miniewicz, J. Mysliwiec, F. Kajzar, and J. Parka, “On the real-time reconstruction of digital holograms displayed on photosensitive liquid crystal systems,” Opt. Mater. 28, 1389-1397 (2006).
    [CrossRef]
  6. L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273-1281 (2001).
    [CrossRef]
  7. A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive-index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236-245 (2007).
    [CrossRef]
  8. J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
    [CrossRef]
  9. J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109-1-171109-3 (2006).
    [CrossRef]
  10. B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514-1-024514-4 (2006).
    [CrossRef]
  11. Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81, 1372-1374 (2002).
    [CrossRef]
  12. A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118-1-041118-3 (2007).
    [CrossRef]
  13. K. Kassapidou and J. R. C. van der Maarel, “Melting of columnar hexagonal DNA liquid crystals,” Eur. Phys. J. B 3, 471-476(1998).
    [CrossRef]
  14. E. Hackman, J. A. Hagen, P. P. Yaney, J. G. Grote, and F. K. Hopkins, “Processing techniques for deoxyribonucleic acid: biopolymer for photonics applications,” Appl. Phys. Lett. 87, 211115-1-211115-3 (2005).
    [CrossRef]
  15. S. Bian and M. G. Kuzyk, “Phase conjugation by low-power continuous-wave degenerate four-wave mixing in nonlinear polymer optical fibers,” Appl. Phys. Lett. 84, 858-860 (2004).
    [CrossRef]
  16. A. Miniewicz, S. Bartkiewicz, J. Sworakowski, J. A. Giacometti, and M. M. Costa, “On optical phase conjugation in polystyrene films containing the azobenzene dye Disperse Red 1,” Pure Appl. Opt. 7, 709-721 (1998).
    [CrossRef]
  17. J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Sedlakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756-1762(2007).
    [CrossRef]
  18. A. Sobolewska and A. Miniewicz, “Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers,” J. Phys. Chem. B 111, 1536-1544 (2007).
    [CrossRef] [PubMed]
  19. J. White and A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5-7 (1980).
    [CrossRef]
  20. S. Bartkiewicz, P. Sikorski, and A. Miniewicz, “Optical image correlator realized with a hybrid liquid-crystal-photoconducting polymer structure,” Opt. Lett. 23, 1769-1771 (1998).
    [CrossRef]
  21. N. Hampp, R. Thoma, D. Oesterhelt, and C. Braeuchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96-->Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834-1841 (1992).
    [CrossRef] [PubMed]
  22. D. Vacar, A. J. Heeger, B. Volodin, B. Kippelen, and N. Peyghambarian, “Compact, low power polymer-based optical correlator,” Rev. Sci. Instrum. 68, 1119-1121 (1997).
    [CrossRef]

2007 (4)

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive-index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236-245 (2007).
[CrossRef]

A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118-1-041118-3 (2007).
[CrossRef]

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Sedlakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756-1762(2007).
[CrossRef]

A. Sobolewska and A. Miniewicz, “Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers,” J. Phys. Chem. B 111, 1536-1544 (2007).
[CrossRef] [PubMed]

2006 (3)

J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109-1-171109-3 (2006).
[CrossRef]

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514-1-024514-4 (2006).
[CrossRef]

A. Miniewicz, J. Mysliwiec, F. Kajzar, and J. Parka, “On the real-time reconstruction of digital holograms displayed on photosensitive liquid crystal systems,” Opt. Mater. 28, 1389-1397 (2006).
[CrossRef]

2005 (1)

E. Hackman, J. A. Hagen, P. P. Yaney, J. G. Grote, and F. K. Hopkins, “Processing techniques for deoxyribonucleic acid: biopolymer for photonics applications,” Appl. Phys. Lett. 87, 211115-1-211115-3 (2005).
[CrossRef]

2004 (2)

S. Bian and M. G. Kuzyk, “Phase conjugation by low-power continuous-wave degenerate four-wave mixing in nonlinear polymer optical fibers,” Appl. Phys. Lett. 84, 858-860 (2004).
[CrossRef]

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

2002 (2)

K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addressed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002).
[CrossRef]

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81, 1372-1374 (2002).
[CrossRef]

2001 (2)

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Sci. Tools: LKB Instrum. J. 72, 1810-1816 (2001).

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273-1281 (2001).
[CrossRef]

2000 (1)

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100, 1741-1753 (2000).
[CrossRef]

1998 (3)

K. Kassapidou and J. R. C. van der Maarel, “Melting of columnar hexagonal DNA liquid crystals,” Eur. Phys. J. B 3, 471-476(1998).
[CrossRef]

A. Miniewicz, S. Bartkiewicz, J. Sworakowski, J. A. Giacometti, and M. M. Costa, “On optical phase conjugation in polystyrene films containing the azobenzene dye Disperse Red 1,” Pure Appl. Opt. 7, 709-721 (1998).
[CrossRef]

S. Bartkiewicz, P. Sikorski, and A. Miniewicz, “Optical image correlator realized with a hybrid liquid-crystal-photoconducting polymer structure,” Opt. Lett. 23, 1769-1771 (1998).
[CrossRef]

1997 (1)

D. Vacar, A. J. Heeger, B. Volodin, B. Kippelen, and N. Peyghambarian, “Compact, low power polymer-based optical correlator,” Rev. Sci. Instrum. 68, 1119-1121 (1997).
[CrossRef]

1992 (1)

1990 (1)

R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsins,” Annu. Rev. Phys. Chem. 41, 683-733(1990).
[CrossRef] [PubMed]

1980 (1)

J. White and A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5-7 (1980).
[CrossRef]

Bartkiewicz, S.

A. Miniewicz, S. Bartkiewicz, J. Sworakowski, J. A. Giacometti, and M. M. Costa, “On optical phase conjugation in polystyrene films containing the azobenzene dye Disperse Red 1,” Pure Appl. Opt. 7, 709-721 (1998).
[CrossRef]

S. Bartkiewicz, P. Sikorski, and A. Miniewicz, “Optical image correlator realized with a hybrid liquid-crystal-photoconducting polymer structure,” Opt. Lett. 23, 1769-1771 (1998).
[CrossRef]

Berkovic, G.

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100, 1741-1753 (2000).
[CrossRef]

Bian, S.

S. Bian and M. G. Kuzyk, “Phase conjugation by low-power continuous-wave degenerate four-wave mixing in nonlinear polymer optical fibers,” Appl. Phys. Lett. 84, 858-860 (2004).
[CrossRef]

Birge, R. R.

R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsins,” Annu. Rev. Phys. Chem. 41, 683-733(1990).
[CrossRef] [PubMed]

Braeuchle, C.

Clarson, S. J.

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Costa, M. M.

A. Miniewicz, S. Bartkiewicz, J. Sworakowski, J. A. Giacometti, and M. M. Costa, “On optical phase conjugation in polystyrene films containing the azobenzene dye Disperse Red 1,” Pure Appl. Opt. 7, 709-721 (1998).
[CrossRef]

Curley, M. J.

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Dalton, L. R.

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Dearing, M.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Sci. Tools: LKB Instrum. J. 72, 1810-1816 (2001).

Diggs, D. E.

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Dufresne, E.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Sci. Tools: LKB Instrum. J. 72, 1810-1816 (2001).

Giacometti, J. A.

A. Miniewicz, S. Bartkiewicz, J. Sworakowski, J. A. Giacometti, and M. M. Costa, “On optical phase conjugation in polystyrene films containing the azobenzene dye Disperse Red 1,” Pure Appl. Opt. 7, 709-721 (1998).
[CrossRef]

Grier, D.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Sci. Tools: LKB Instrum. J. 72, 1810-1816 (2001).

Grote, J. G.

A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118-1-041118-3 (2007).
[CrossRef]

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive-index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236-245 (2007).
[CrossRef]

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514-1-024514-4 (2006).
[CrossRef]

J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109-1-171109-3 (2006).
[CrossRef]

E. Hackman, J. A. Hagen, P. P. Yaney, J. G. Grote, and F. K. Hopkins, “Processing techniques for deoxyribonucleic acid: biopolymer for photonics applications,” Appl. Phys. Lett. 87, 211115-1-211115-3 (2005).
[CrossRef]

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Hackman, E.

E. Hackman, J. A. Hagen, P. P. Yaney, J. G. Grote, and F. K. Hopkins, “Processing techniques for deoxyribonucleic acid: biopolymer for photonics applications,” Appl. Phys. Lett. 87, 211115-1-211115-3 (2005).
[CrossRef]

Hagen, J. A.

J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109-1-171109-3 (2006).
[CrossRef]

E. Hackman, J. A. Hagen, P. P. Yaney, J. G. Grote, and F. K. Hopkins, “Processing techniques for deoxyribonucleic acid: biopolymer for photonics applications,” Appl. Phys. Lett. 87, 211115-1-211115-3 (2005).
[CrossRef]

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Hampp, N.

Heckman, E.

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Heeger, A. J.

D. Vacar, A. J. Heeger, B. Volodin, B. Kippelen, and N. Peyghambarian, “Compact, low power polymer-based optical correlator,” Rev. Sci. Instrum. 68, 1119-1121 (1997).
[CrossRef]

Hopkins, F. K.

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514-1-024514-4 (2006).
[CrossRef]

E. Hackman, J. A. Hagen, P. P. Yaney, J. G. Grote, and F. K. Hopkins, “Processing techniques for deoxyribonucleic acid: biopolymer for photonics applications,” Appl. Phys. Lett. 87, 211115-1-211115-3 (2005).
[CrossRef]

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Jen, A. K.-Y

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Kajiyama, T.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273-1281 (2001).
[CrossRef]

Kajzar, F.

A. Miniewicz, J. Mysliwiec, F. Kajzar, and J. Parka, “On the real-time reconstruction of digital holograms displayed on photosensitive liquid crystal systems,” Opt. Mater. 28, 1389-1397 (2006).
[CrossRef]

K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addressed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002).
[CrossRef]

Kassapidou, K.

K. Kassapidou and J. R. C. van der Maarel, “Melting of columnar hexagonal DNA liquid crystals,” Eur. Phys. J. B 3, 471-476(1998).
[CrossRef]

Kawabe, Y.

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81, 1372-1374 (2002).
[CrossRef]

Kippelen, B.

D. Vacar, A. J. Heeger, B. Volodin, B. Kippelen, and N. Peyghambarian, “Compact, low power polymer-based optical correlator,” Rev. Sci. Instrum. 68, 1119-1121 (1997).
[CrossRef]

Kochalska, A.

A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118-1-041118-3 (2007).
[CrossRef]

Komorowska, K.

K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addressed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002).
[CrossRef]

Krongauz, V.

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100, 1741-1753 (2000).
[CrossRef]

Kuzyk, M. G.

S. Bian and M. G. Kuzyk, “Phase conjugation by low-power continuous-wave degenerate four-wave mixing in nonlinear polymer optical fibers,” Appl. Phys. Lett. 84, 858-860 (2004).
[CrossRef]

Li, W.

J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109-1-171109-3 (2006).
[CrossRef]

Miniewicz, A.

A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118-1-041118-3 (2007).
[CrossRef]

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Sedlakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756-1762(2007).
[CrossRef]

A. Sobolewska and A. Miniewicz, “Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers,” J. Phys. Chem. B 111, 1536-1544 (2007).
[CrossRef] [PubMed]

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive-index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236-245 (2007).
[CrossRef]

A. Miniewicz, J. Mysliwiec, F. Kajzar, and J. Parka, “On the real-time reconstruction of digital holograms displayed on photosensitive liquid crystal systems,” Opt. Mater. 28, 1389-1397 (2006).
[CrossRef]

K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addressed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002).
[CrossRef]

A. Miniewicz, S. Bartkiewicz, J. Sworakowski, J. A. Giacometti, and M. M. Costa, “On optical phase conjugation in polystyrene films containing the azobenzene dye Disperse Red 1,” Pure Appl. Opt. 7, 709-721 (1998).
[CrossRef]

S. Bartkiewicz, P. Sikorski, and A. Miniewicz, “Optical image correlator realized with a hybrid liquid-crystal-photoconducting polymer structure,” Opt. Lett. 23, 1769-1771 (1998).
[CrossRef]

Mysliwiec, J.

A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118-1-041118-3 (2007).
[CrossRef]

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Sedlakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756-1762(2007).
[CrossRef]

A. Miniewicz, J. Mysliwiec, F. Kajzar, and J. Parka, “On the real-time reconstruction of digital holograms displayed on photosensitive liquid crystal systems,” Opt. Mater. 28, 1389-1397 (2006).
[CrossRef]

Nakamura, T.

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81, 1372-1374 (2002).
[CrossRef]

Nelson, R. L.

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Nespurek, S.

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Sedlakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756-1762(2007).
[CrossRef]

Oesterhelt, D.

Ogata, N.

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81, 1372-1374 (2002).
[CrossRef]

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273-1281 (2001).
[CrossRef]

Parka, J.

A. Miniewicz, J. Mysliwiec, F. Kajzar, and J. Parka, “On the real-time reconstruction of digital holograms displayed on photosensitive liquid crystal systems,” Opt. Mater. 28, 1389-1397 (2006).
[CrossRef]

K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addressed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002).
[CrossRef]

Peyghambarian, N.

D. Vacar, A. J. Heeger, B. Volodin, B. Kippelen, and N. Peyghambarian, “Compact, low power polymer-based optical correlator,” Rev. Sci. Instrum. 68, 1119-1121 (1997).
[CrossRef]

Samoc, A.

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive-index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236-245 (2007).
[CrossRef]

A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118-1-041118-3 (2007).
[CrossRef]

Samoc, M.

A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118-1-041118-3 (2007).
[CrossRef]

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive-index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236-245 (2007).
[CrossRef]

Sariciftci, N. S.

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514-1-024514-4 (2006).
[CrossRef]

Sasaki, S.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273-1281 (2001).
[CrossRef]

Sedlakova, Z.

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Sedlakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756-1762(2007).
[CrossRef]

Sheets, S.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Sci. Tools: LKB Instrum. J. 72, 1810-1816 (2001).

Sikorski, P.

Singh, B.

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514-1-024514-4 (2006).
[CrossRef]

Sobolewska, A.

A. Sobolewska and A. Miniewicz, “Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers,” J. Phys. Chem. B 111, 1536-1544 (2007).
[CrossRef] [PubMed]

Spalding, G.

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Sci. Tools: LKB Instrum. J. 72, 1810-1816 (2001).

Steckl, A. J.

J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109-1-171109-3 (2006).
[CrossRef]

Steier, W. H.

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Stone, M. O.

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Studenovsky, M.

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Sedlakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756-1762(2007).
[CrossRef]

Sworakowski, J.

A. Miniewicz, S. Bartkiewicz, J. Sworakowski, J. A. Giacometti, and M. M. Costa, “On optical phase conjugation in polystyrene films containing the azobenzene dye Disperse Red 1,” Pure Appl. Opt. 7, 709-721 (1998).
[CrossRef]

Thoma, R.

Vacar, D.

D. Vacar, A. J. Heeger, B. Volodin, B. Kippelen, and N. Peyghambarian, “Compact, low power polymer-based optical correlator,” Rev. Sci. Instrum. 68, 1119-1121 (1997).
[CrossRef]

van der Maarel, J. R. C.

K. Kassapidou and J. R. C. van der Maarel, “Melting of columnar hexagonal DNA liquid crystals,” Eur. Phys. J. B 3, 471-476(1998).
[CrossRef]

Volodin, B.

D. Vacar, A. J. Heeger, B. Volodin, B. Kippelen, and N. Peyghambarian, “Compact, low power polymer-based optical correlator,” Rev. Sci. Instrum. 68, 1119-1121 (1997).
[CrossRef]

Wang, L.

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81, 1372-1374 (2002).
[CrossRef]

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273-1281 (2001).
[CrossRef]

Weiss, V.

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100, 1741-1753 (2000).
[CrossRef]

White, J.

J. White and A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5-7 (1980).
[CrossRef]

Yaney, P. P.

E. Hackman, J. A. Hagen, P. P. Yaney, J. G. Grote, and F. K. Hopkins, “Processing techniques for deoxyribonucleic acid: biopolymer for photonics applications,” Appl. Phys. Lett. 87, 211115-1-211115-3 (2005).
[CrossRef]

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Yariv, A.

J. White and A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5-7 (1980).
[CrossRef]

Yoshida, J.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273-1281 (2001).
[CrossRef]

Zetts, J. S.

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Zhang, C.

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsins,” Annu. Rev. Phys. Chem. 41, 683-733(1990).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109-1-171109-3 (2006).
[CrossRef]

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81, 1372-1374 (2002).
[CrossRef]

A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118-1-041118-3 (2007).
[CrossRef]

E. Hackman, J. A. Hagen, P. P. Yaney, J. G. Grote, and F. K. Hopkins, “Processing techniques for deoxyribonucleic acid: biopolymer for photonics applications,” Appl. Phys. Lett. 87, 211115-1-211115-3 (2005).
[CrossRef]

S. Bian and M. G. Kuzyk, “Phase conjugation by low-power continuous-wave degenerate four-wave mixing in nonlinear polymer optical fibers,” Appl. Phys. Lett. 84, 858-860 (2004).
[CrossRef]

J. White and A. Yariv, “Real-time image processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5-7 (1980).
[CrossRef]

Chem. Mater. (1)

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13, 1273-1281 (2001).
[CrossRef]

Chem. Rev. (1)

G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100, 1741-1753 (2000).
[CrossRef]

Eur. Phys. J. B (1)

K. Kassapidou and J. R. C. van der Maarel, “Melting of columnar hexagonal DNA liquid crystals,” Eur. Phys. J. B 3, 471-476(1998).
[CrossRef]

J. Appl. Phys. (2)

K. Komorowska, A. Miniewicz, J. Parka, and F. Kajzar, “Self-induced nonlinear Zernike filter realized with optically addressed liquid crystal spatial light modulator,” J. Appl. Phys. 92, 5635-5641 (2002).
[CrossRef]

B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514-1-024514-4 (2006).
[CrossRef]

J. Appl. Polym. Sci. (1)

A. Samoc, A. Miniewicz, M. Samoc, and J. G. Grote, “Refractive-index anisotropy and optical dispersion in films of deoxyribonucleic acid,” J. Appl. Polym. Sci. 105, 236-245 (2007).
[CrossRef]

J. Phys. Chem. B (2)

J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584-8591 (2004).
[CrossRef]

A. Sobolewska and A. Miniewicz, “Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers,” J. Phys. Chem. B 111, 1536-1544 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Mater. (2)

A. Miniewicz, J. Mysliwiec, F. Kajzar, and J. Parka, “On the real-time reconstruction of digital holograms displayed on photosensitive liquid crystal systems,” Opt. Mater. 28, 1389-1397 (2006).
[CrossRef]

J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, and Z. Sedlakova, “Efficient holographic recording in novel azo-containing polymer,” Opt. Mater. 29, 1756-1762(2007).
[CrossRef]

Pure Appl. Opt. (1)

A. Miniewicz, S. Bartkiewicz, J. Sworakowski, J. A. Giacometti, and M. M. Costa, “On optical phase conjugation in polystyrene films containing the azobenzene dye Disperse Red 1,” Pure Appl. Opt. 7, 709-721 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

D. Vacar, A. J. Heeger, B. Volodin, B. Kippelen, and N. Peyghambarian, “Compact, low power polymer-based optical correlator,” Rev. Sci. Instrum. 68, 1119-1121 (1997).
[CrossRef]

Sci. Tools: LKB Instrum. J. (1)

E. Dufresne, G. Spalding, M. Dearing, S. Sheets, and D. Grier, “Computer-generated holographic optical tweezer arrays,” Sci. Tools: LKB Instrum. J. 72, 1810-1816 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption spectra of DNA–CTMA:DR1 thin film.

Fig. 2
Fig. 2

Experimental setup of optical correlation; M—mirror, EX—expander, CH—chopper, L—lens, F—mask, S—screen, and BS—beam splitter.

Fig. 3
Fig. 3

Results of optical correlation. (a) Reference mask containing the searched “x” symbol. (b) Signal mask containing various symbols such as a square, two circles, and the “x” symbol. (c) Correlation image taken by a CCD camera. (d) Three-dimensional image of a CCD correlation signal.

Fig. 4
Fig. 4

Dynamics of the correlated signal appearance and decay (solid lines) versus the time for different time scales. Chopped input light intensity is also given (dash-dot lines).

Fig. 5
Fig. 5

Influence of the input laser power on a time constant of the optical correlation signal formation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ 2 n eff sin θ 2 ,

Metrics