Abstract

Experiments were performed in the temperature range of 2941143K in pure CO2 using high-resolution rotational coherent anti-Stokes Raman spectroscopy (CARS), in the dual-broadband approach. Experimental single-shot spectra were recorded with high spectral resolution using a single-mode Nd:YAG laser and a relay imaging lens system on the exit of a 1m spectrometer. A theoretical rotational CARS model for CO2 was developed for evaluation of the experimental spectra. The evaluated mean temperatures of the recorded single-shot dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) spectra using this model showed good agreement with thermocouple temperatures, and the relative standard deviation of evaluated single-shot temperatures was generally 2–3%. Simultaneous thermometry and relative CO2/N2-concentration measurements were demonstrated in the product gas of premixed laminar CO/air flames at atmospheric pressure. Although the model proved to be accurate for thermometry up to 1143K, limitations were observed at flame temperatures where temperatures were overestimated and relative CO2/N2 concentrations were underestimated. Potential sources for these discrepancies are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Combustion Science and Technology book series, 2nd ed. (Gordon & Breach, 1996), Vol. 3.
  2. D. A. Greenhalgh, Quantitative CARS Spectroscopy, Advances in Non-Linear Spectroscopy (Wiley, 1988), pp. 193-251.
  3. P. R. Regnier and J. P. E. Taran, “Possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240-242 (1973).
    [CrossRef]
  4. I. R. Beattie, T. R. Gilson, and D. A. Greenhalgh, “Low-frequency coherent anti-Stokes Raman-spectroscopy of air,” Nature 276 (5686), 378-379 (1978).
    [CrossRef]
  5. M. Alden, H. Edner, and S. Svanberg, “Coherent anti-Stokes Raman-spectroscopy (CARS) applied in combustion probing,” Phys. Scr. 27, 29-38 (1983).
    [CrossRef]
  6. M. Alden, P. E. Bengtsson, H. Edner, S. Kroll, and D. Nilsson, “Rotational CARS--a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206-3219 (1989).
  7. M. Alden, P. E. Bengtsson, and H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493-4500 (1986).
  8. A. C. Eckbreth and T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman-spectroscopy and coherent Stokes Raman-spectroscopy with arbitrary pump Stokes spectral separation,” Opt. Lett. 11, 496-498 (1986).
  9. P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129-140 (1992).
    [CrossRef]
  10. F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Instit. 30, 1673-1680 (2005).
  11. F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of Rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Instit. 31, 833-840 (2007).
  12. C. Brackmann, J. Bood, M. Afzelius, and P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13-R25 (2004).
    [CrossRef]
  13. J. Bood, P.-E. Bengtsson, and M. Aldén, “Non-intrusive temperature and oxygen concentration measurements in a catalytic combustor using rotational coherent anti-Stokes Raman spectroscopy,” ASME 99-GT-114 (1999).
  14. M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust gas recirculation measurements in a homogeneous charge compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
    [CrossRef]
  15. L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational raman linewidth models--accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466-2477 (1993).
    [CrossRef]
  16. L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29-37 (1996).
  17. M. Schenk, A. Thumann, T. Seeger, and A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for determining single-shot simultaneous temperature and relative N2-O2 concentration,” Appl. Opt. 37, 5659-5671 (1998).
  18. M. Afzelius, C. Brackmann, F. Vestin, and P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664-6672(2004).
    [CrossRef]
  19. J. Bood, P.-E. Bengtsson, and M. Aldén, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300-600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607-620 (2000).
  20. J. Buldyreva, J. Bonamy, M. C. Weikl, F. Beyrau, T. Seeger, A. Leipertz, F. Vestin, M. Afzelius, J. Bood, and P.-E. Bengtsson, “Linewidth modelling of C2H2-N2 mixtures tested by rotational CARS measurements,” J. Raman Spectrosc. 37, 647-654 (2006).
    [CrossRef]
  21. M. Schenk, T. Seeger, and A. Leipertz, “Time-resolved CO2 thermometry for pressures as great as 5 MPa by use of pure rotational coherent anti-Stokes Raman scattering,” Appl. Opt. 44, 6526-6536 (2005).
    [CrossRef]
  22. M. Schenk, T. Seeger, and A. Leipertz, “Simultaneous and time-resolved temperature and relative CO2─N2 and O2-CO2-N2 concentration measurements with pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 44, 5582-5593 (2005).
    [CrossRef]
  23. F. Vestin, D. Sedarsky, R. Collin, M. Aldén, M. Linne, and P.-E. Bengtsson, “Rotational coherent anti-Stokes spectroscopy applied for thermometry in a high-pressure burner,” (to be published), Combust. Flame (2007).
  24. G. Herzberg, Spectra of Diatomic Molecules, Molecular spectra and molecular structure (Robert E. Krieger, 1989), Vol. I.
  25. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Molecular Spectra and Molecular Structure (Van Nostrand, 1945), Vol. II.
  26. L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy-levels, intensities, and linewidths of atmospheric carbon-dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537-566 (1992).
    [CrossRef]
  27. L. S. Rothman and L. D. G. Young, “Infrared energy-levels and intensities of carbon-dioxide II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505-524 (1981).
    [CrossRef]
  28. G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules, Molecular Spectra and Molecular Structure (Krieger, 1991), Vol. III.
  29. M. P. Bogaard, A. D. Buckingham, R. K. Pierens, and A. H. White, “Rayleigh-scattering depolarization ratio and molecular polarizability anisotropy for gases,” J. Chem. Soc. 74, 3008-3015 (1978).
  30. B. Lavorel, G. Millot, R. Saintloup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, “Study of collisional effects on band shapes of the ν1/ν2 fermi dyad in CO2 gas with stimulated Raman-spectroscopy .1. Rotational and vibrational-relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176-2184 (1990).
    [CrossRef]
  31. M. Afzelius and P.-E. Bengtsson, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. I. Inter-branch interference effect,” Appl. Phys. B 75, 763-769 (2002).
  32. M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771-778 (2002).
  33. M. Afzelius and P.-E. Bengtsson, “Precision of single-shot dual-broadband rotational CARS thermometry with single-mode and multi-mode Nd : YAG lasers,” J. Raman Spectrosc. 34, 940-945 (2003).
    [CrossRef]
  34. M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Development of high-resolution N2 coherent anti-Stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt. 39 (33), 6243-6256 (2000).
  35. F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Improved species concentration measurements using a species-specific weighting procedure on rotational CARS spectra,” J. Raman Spectrosc. 36, 95-101 (2005).
    [CrossRef]
  36. T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665-2671 (1996).
  37. F. Beyrau, M. C. Weikl, T. Seeger, and A. Leipertz, “Application of an optical pulse stretcher to coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 29, 2381-2383 (2004).
    [CrossRef]
  38. F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Improved temperature precision in rotational coherent anti-Stokes Raman spectroscopy with a modeless dye laser,” Appl. Opt. 45, 744-747 (2006).
    [CrossRef]
  39. F. Vestin and P.-E. Bengtsson, “Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame,” submitted to Proceedings of the Combustion Institute (2008).

2007

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of Rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Instit. 31, 833-840 (2007).

2006

2005

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Improved species concentration measurements using a species-specific weighting procedure on rotational CARS spectra,” J. Raman Spectrosc. 36, 95-101 (2005).
[CrossRef]

M. Schenk, T. Seeger, and A. Leipertz, “Time-resolved CO2 thermometry for pressures as great as 5 MPa by use of pure rotational coherent anti-Stokes Raman scattering,” Appl. Opt. 44, 6526-6536 (2005).
[CrossRef]

M. Schenk, T. Seeger, and A. Leipertz, “Simultaneous and time-resolved temperature and relative CO2─N2 and O2-CO2-N2 concentration measurements with pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 44, 5582-5593 (2005).
[CrossRef]

F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Instit. 30, 1673-1680 (2005).

2004

2003

M. Afzelius and P.-E. Bengtsson, “Precision of single-shot dual-broadband rotational CARS thermometry with single-mode and multi-mode Nd : YAG lasers,” J. Raman Spectrosc. 34, 940-945 (2003).
[CrossRef]

2002

M. Afzelius and P.-E. Bengtsson, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. I. Inter-branch interference effect,” Appl. Phys. B 75, 763-769 (2002).

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771-778 (2002).

2000

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Development of high-resolution N2 coherent anti-Stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt. 39 (33), 6243-6256 (2000).

J. Bood, P.-E. Bengtsson, and M. Aldén, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300-600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607-620 (2000).

1998

1996

T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665-2671 (1996).

L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29-37 (1996).

1993

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational raman linewidth models--accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466-2477 (1993).
[CrossRef]

1992

L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy-levels, intensities, and linewidths of atmospheric carbon-dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537-566 (1992).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129-140 (1992).
[CrossRef]

1990

B. Lavorel, G. Millot, R. Saintloup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, “Study of collisional effects on band shapes of the ν1/ν2 fermi dyad in CO2 gas with stimulated Raman-spectroscopy .1. Rotational and vibrational-relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176-2184 (1990).
[CrossRef]

1989

1986

1983

M. Alden, H. Edner, and S. Svanberg, “Coherent anti-Stokes Raman-spectroscopy (CARS) applied in combustion probing,” Phys. Scr. 27, 29-38 (1983).
[CrossRef]

1981

L. S. Rothman and L. D. G. Young, “Infrared energy-levels and intensities of carbon-dioxide II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505-524 (1981).
[CrossRef]

1978

M. P. Bogaard, A. D. Buckingham, R. K. Pierens, and A. H. White, “Rayleigh-scattering depolarization ratio and molecular polarizability anisotropy for gases,” J. Chem. Soc. 74, 3008-3015 (1978).

I. R. Beattie, T. R. Gilson, and D. A. Greenhalgh, “Low-frequency coherent anti-Stokes Raman-spectroscopy of air,” Nature 276 (5686), 378-379 (1978).
[CrossRef]

1973

P. R. Regnier and J. P. E. Taran, “Possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240-242 (1973).
[CrossRef]

Afzelius, M.

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of Rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Instit. 31, 833-840 (2007).

J. Buldyreva, J. Bonamy, M. C. Weikl, F. Beyrau, T. Seeger, A. Leipertz, F. Vestin, M. Afzelius, J. Bood, and P.-E. Bengtsson, “Linewidth modelling of C2H2-N2 mixtures tested by rotational CARS measurements,” J. Raman Spectrosc. 37, 647-654 (2006).
[CrossRef]

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Improved temperature precision in rotational coherent anti-Stokes Raman spectroscopy with a modeless dye laser,” Appl. Opt. 45, 744-747 (2006).
[CrossRef]

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Improved species concentration measurements using a species-specific weighting procedure on rotational CARS spectra,” J. Raman Spectrosc. 36, 95-101 (2005).
[CrossRef]

F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Instit. 30, 1673-1680 (2005).

C. Brackmann, J. Bood, M. Afzelius, and P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13-R25 (2004).
[CrossRef]

M. Afzelius, C. Brackmann, F. Vestin, and P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664-6672(2004).
[CrossRef]

M. Afzelius and P.-E. Bengtsson, “Precision of single-shot dual-broadband rotational CARS thermometry with single-mode and multi-mode Nd : YAG lasers,” J. Raman Spectrosc. 34, 940-945 (2003).
[CrossRef]

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771-778 (2002).

M. Afzelius and P.-E. Bengtsson, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. I. Inter-branch interference effect,” Appl. Phys. B 75, 763-769 (2002).

Alden, M.

Aldén, M.

J. Bood, P.-E. Bengtsson, and M. Aldén, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300-600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607-620 (2000).

L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29-37 (1996).

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational raman linewidth models--accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466-2477 (1993).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129-140 (1992).
[CrossRef]

J. Bood, P.-E. Bengtsson, and M. Aldén, “Non-intrusive temperature and oxygen concentration measurements in a catalytic combustor using rotational coherent anti-Stokes Raman spectroscopy,” ASME 99-GT-114 (1999).

F. Vestin, D. Sedarsky, R. Collin, M. Aldén, M. Linne, and P.-E. Bengtsson, “Rotational coherent anti-Stokes spectroscopy applied for thermometry in a high-pressure burner,” (to be published), Combust. Flame (2007).

Anderson, T. J.

Beattie, I. R.

I. R. Beattie, T. R. Gilson, and D. A. Greenhalgh, “Low-frequency coherent anti-Stokes Raman-spectroscopy of air,” Nature 276 (5686), 378-379 (1978).
[CrossRef]

Bengtsson, P. E.

Bengtsson, P.-E.

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of Rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Instit. 31, 833-840 (2007).

J. Buldyreva, J. Bonamy, M. C. Weikl, F. Beyrau, T. Seeger, A. Leipertz, F. Vestin, M. Afzelius, J. Bood, and P.-E. Bengtsson, “Linewidth modelling of C2H2-N2 mixtures tested by rotational CARS measurements,” J. Raman Spectrosc. 37, 647-654 (2006).
[CrossRef]

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Improved temperature precision in rotational coherent anti-Stokes Raman spectroscopy with a modeless dye laser,” Appl. Opt. 45, 744-747 (2006).
[CrossRef]

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Improved species concentration measurements using a species-specific weighting procedure on rotational CARS spectra,” J. Raman Spectrosc. 36, 95-101 (2005).
[CrossRef]

F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Instit. 30, 1673-1680 (2005).

C. Brackmann, J. Bood, M. Afzelius, and P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13-R25 (2004).
[CrossRef]

M. Afzelius, C. Brackmann, F. Vestin, and P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664-6672(2004).
[CrossRef]

M. Afzelius and P.-E. Bengtsson, “Precision of single-shot dual-broadband rotational CARS thermometry with single-mode and multi-mode Nd : YAG lasers,” J. Raman Spectrosc. 34, 940-945 (2003).
[CrossRef]

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771-778 (2002).

M. Afzelius and P.-E. Bengtsson, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. I. Inter-branch interference effect,” Appl. Phys. B 75, 763-769 (2002).

J. Bood, P.-E. Bengtsson, and M. Aldén, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300-600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607-620 (2000).

L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29-37 (1996).

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational raman linewidth models--accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466-2477 (1993).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129-140 (1992).
[CrossRef]

J. Bood, P.-E. Bengtsson, and M. Aldén, “Non-intrusive temperature and oxygen concentration measurements in a catalytic combustor using rotational coherent anti-Stokes Raman spectroscopy,” ASME 99-GT-114 (1999).

F. Vestin, D. Sedarsky, R. Collin, M. Aldén, M. Linne, and P.-E. Bengtsson, “Rotational coherent anti-Stokes spectroscopy applied for thermometry in a high-pressure burner,” (to be published), Combust. Flame (2007).

F. Vestin and P.-E. Bengtsson, “Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame,” submitted to Proceedings of the Combustion Institute (2008).

Berger, H.

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771-778 (2002).

B. Lavorel, G. Millot, R. Saintloup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, “Study of collisional effects on band shapes of the ν1/ν2 fermi dyad in CO2 gas with stimulated Raman-spectroscopy .1. Rotational and vibrational-relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176-2184 (1990).
[CrossRef]

Beyrau, F.

Bogaard, M. P.

M. P. Bogaard, A. D. Buckingham, R. K. Pierens, and A. H. White, “Rayleigh-scattering depolarization ratio and molecular polarizability anisotropy for gases,” J. Chem. Soc. 74, 3008-3015 (1978).

Bonamy, J.

J. Buldyreva, J. Bonamy, M. C. Weikl, F. Beyrau, T. Seeger, A. Leipertz, F. Vestin, M. Afzelius, J. Bood, and P.-E. Bengtsson, “Linewidth modelling of C2H2-N2 mixtures tested by rotational CARS measurements,” J. Raman Spectrosc. 37, 647-654 (2006).
[CrossRef]

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771-778 (2002).

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational raman linewidth models--accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466-2477 (1993).
[CrossRef]

B. Lavorel, G. Millot, R. Saintloup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, “Study of collisional effects on band shapes of the ν1/ν2 fermi dyad in CO2 gas with stimulated Raman-spectroscopy .1. Rotational and vibrational-relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176-2184 (1990).
[CrossRef]

Bonamy, L.

B. Lavorel, G. Millot, R. Saintloup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, “Study of collisional effects on band shapes of the ν1/ν2 fermi dyad in CO2 gas with stimulated Raman-spectroscopy .1. Rotational and vibrational-relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176-2184 (1990).
[CrossRef]

Bood, J.

J. Buldyreva, J. Bonamy, M. C. Weikl, F. Beyrau, T. Seeger, A. Leipertz, F. Vestin, M. Afzelius, J. Bood, and P.-E. Bengtsson, “Linewidth modelling of C2H2-N2 mixtures tested by rotational CARS measurements,” J. Raman Spectrosc. 37, 647-654 (2006).
[CrossRef]

C. Brackmann, J. Bood, M. Afzelius, and P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13-R25 (2004).
[CrossRef]

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771-778 (2002).

J. Bood, P.-E. Bengtsson, and M. Aldén, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300-600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607-620 (2000).

J. Bood, P.-E. Bengtsson, and M. Aldén, “Non-intrusive temperature and oxygen concentration measurements in a catalytic combustor using rotational coherent anti-Stokes Raman spectroscopy,” ASME 99-GT-114 (1999).

Brackmann, C.

F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Instit. 30, 1673-1680 (2005).

C. Brackmann, J. Bood, M. Afzelius, and P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13-R25 (2004).
[CrossRef]

M. Afzelius, C. Brackmann, F. Vestin, and P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664-6672(2004).
[CrossRef]

Buckingham, A. D.

M. P. Bogaard, A. D. Buckingham, R. K. Pierens, and A. H. White, “Rayleigh-scattering depolarization ratio and molecular polarizability anisotropy for gases,” J. Chem. Soc. 74, 3008-3015 (1978).

Buldyreva, J.

J. Buldyreva, J. Bonamy, M. C. Weikl, F. Beyrau, T. Seeger, A. Leipertz, F. Vestin, M. Afzelius, J. Bood, and P.-E. Bengtsson, “Linewidth modelling of C2H2-N2 mixtures tested by rotational CARS measurements,” J. Raman Spectrosc. 37, 647-654 (2006).
[CrossRef]

Chaussard, F.

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771-778 (2002).

Collin, R.

F. Vestin, D. Sedarsky, R. Collin, M. Aldén, M. Linne, and P.-E. Bengtsson, “Rotational coherent anti-Stokes spectroscopy applied for thermometry in a high-pressure burner,” (to be published), Combust. Flame (2007).

Dreier, T.

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771-778 (2002).

Dutton, J. C.

Eckbreth, A. C.

A. C. Eckbreth and T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman-spectroscopy and coherent Stokes Raman-spectroscopy with arbitrary pump Stokes spectral separation,” Opt. Lett. 11, 496-498 (1986).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Combustion Science and Technology book series, 2nd ed. (Gordon & Breach, 1996), Vol. 3.

Edner, H.

Gamache, R. R.

L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy-levels, intensities, and linewidths of atmospheric carbon-dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537-566 (1992).
[CrossRef]

Gilson, T. R.

I. R. Beattie, T. R. Gilson, and D. A. Greenhalgh, “Low-frequency coherent anti-Stokes Raman-spectroscopy of air,” Nature 276 (5686), 378-379 (1978).
[CrossRef]

Greenhalgh, D. A.

I. R. Beattie, T. R. Gilson, and D. A. Greenhalgh, “Low-frequency coherent anti-Stokes Raman-spectroscopy of air,” Nature 276 (5686), 378-379 (1978).
[CrossRef]

D. A. Greenhalgh, Quantitative CARS Spectroscopy, Advances in Non-Linear Spectroscopy (Wiley, 1988), pp. 193-251.

Hawkins, R. L.

L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy-levels, intensities, and linewidths of atmospheric carbon-dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537-566 (1992).
[CrossRef]

Herzberg, G.

G. Herzberg, Spectra of Diatomic Molecules, Molecular spectra and molecular structure (Robert E. Krieger, 1989), Vol. I.

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Molecular Spectra and Molecular Structure (Van Nostrand, 1945), Vol. II.

G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules, Molecular Spectra and Molecular Structure (Krieger, 1991), Vol. III.

Kroll, S.

Kröll, S.

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational raman linewidth models--accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466-2477 (1993).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129-140 (1992).
[CrossRef]

Lavorel, B.

B. Lavorel, G. Millot, R. Saintloup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, “Study of collisional effects on band shapes of the ν1/ν2 fermi dyad in CO2 gas with stimulated Raman-spectroscopy .1. Rotational and vibrational-relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176-2184 (1990).
[CrossRef]

Leipertz, A.

M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust gas recirculation measurements in a homogeneous charge compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef]

J. Buldyreva, J. Bonamy, M. C. Weikl, F. Beyrau, T. Seeger, A. Leipertz, F. Vestin, M. Afzelius, J. Bood, and P.-E. Bengtsson, “Linewidth modelling of C2H2-N2 mixtures tested by rotational CARS measurements,” J. Raman Spectrosc. 37, 647-654 (2006).
[CrossRef]

M. Schenk, T. Seeger, and A. Leipertz, “Time-resolved CO2 thermometry for pressures as great as 5 MPa by use of pure rotational coherent anti-Stokes Raman scattering,” Appl. Opt. 44, 6526-6536 (2005).
[CrossRef]

M. Schenk, T. Seeger, and A. Leipertz, “Simultaneous and time-resolved temperature and relative CO2─N2 and O2-CO2-N2 concentration measurements with pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 44, 5582-5593 (2005).
[CrossRef]

F. Beyrau, M. C. Weikl, T. Seeger, and A. Leipertz, “Application of an optical pulse stretcher to coherent anti-Stokes Raman spectroscopy,” Opt. Lett. 29, 2381-2383 (2004).
[CrossRef]

M. Schenk, A. Thumann, T. Seeger, and A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for determining single-shot simultaneous temperature and relative N2-O2 concentration,” Appl. Opt. 37, 5659-5671 (1998).

T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665-2671 (1996).

Linne, M.

F. Vestin, D. Sedarsky, R. Collin, M. Aldén, M. Linne, and P.-E. Bengtsson, “Rotational coherent anti-Stokes spectroscopy applied for thermometry in a high-pressure burner,” (to be published), Combust. Flame (2007).

Lucht, R. P.

Martinsson, L.

L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29-37 (1996).

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational raman linewidth models--accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466-2477 (1993).
[CrossRef]

P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129-140 (1992).
[CrossRef]

Millot, G.

B. Lavorel, G. Millot, R. Saintloup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, “Study of collisional effects on band shapes of the ν1/ν2 fermi dyad in CO2 gas with stimulated Raman-spectroscopy .1. Rotational and vibrational-relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176-2184 (1990).
[CrossRef]

Nilsson, D.

Pierens, R. K.

M. P. Bogaard, A. D. Buckingham, R. K. Pierens, and A. H. White, “Rayleigh-scattering depolarization ratio and molecular polarizability anisotropy for gases,” J. Chem. Soc. 74, 3008-3015 (1978).

Regnier, P. R.

P. R. Regnier and J. P. E. Taran, “Possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240-242 (1973).
[CrossRef]

Robert, D.

B. Lavorel, G. Millot, R. Saintloup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, “Study of collisional effects on band shapes of the ν1/ν2 fermi dyad in CO2 gas with stimulated Raman-spectroscopy .1. Rotational and vibrational-relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176-2184 (1990).
[CrossRef]

Rothman, L. S.

L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy-levels, intensities, and linewidths of atmospheric carbon-dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537-566 (1992).
[CrossRef]

L. S. Rothman and L. D. G. Young, “Infrared energy-levels and intensities of carbon-dioxide II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505-524 (1981).
[CrossRef]

Saintloup, R.

B. Lavorel, G. Millot, R. Saintloup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, “Study of collisional effects on band shapes of the ν1/ν2 fermi dyad in CO2 gas with stimulated Raman-spectroscopy .1. Rotational and vibrational-relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176-2184 (1990).
[CrossRef]

Schenk, M.

Sedarsky, D.

F. Vestin, D. Sedarsky, R. Collin, M. Aldén, M. Linne, and P.-E. Bengtsson, “Rotational coherent anti-Stokes spectroscopy applied for thermometry in a high-pressure burner,” (to be published), Combust. Flame (2007).

Seeger, T.

Svanberg, S.

M. Alden, H. Edner, and S. Svanberg, “Coherent anti-Stokes Raman-spectroscopy (CARS) applied in combustion probing,” Phys. Scr. 27, 29-38 (1983).
[CrossRef]

Taran, J. P. E.

P. R. Regnier and J. P. E. Taran, “Possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240-242 (1973).
[CrossRef]

Thumann, A.

Vestin, F.

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of Rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Instit. 31, 833-840 (2007).

J. Buldyreva, J. Bonamy, M. C. Weikl, F. Beyrau, T. Seeger, A. Leipertz, F. Vestin, M. Afzelius, J. Bood, and P.-E. Bengtsson, “Linewidth modelling of C2H2-N2 mixtures tested by rotational CARS measurements,” J. Raman Spectrosc. 37, 647-654 (2006).
[CrossRef]

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Improved temperature precision in rotational coherent anti-Stokes Raman spectroscopy with a modeless dye laser,” Appl. Opt. 45, 744-747 (2006).
[CrossRef]

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Improved species concentration measurements using a species-specific weighting procedure on rotational CARS spectra,” J. Raman Spectrosc. 36, 95-101 (2005).
[CrossRef]

F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Instit. 30, 1673-1680 (2005).

M. Afzelius, C. Brackmann, F. Vestin, and P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664-6672(2004).
[CrossRef]

F. Vestin, D. Sedarsky, R. Collin, M. Aldén, M. Linne, and P.-E. Bengtsson, “Rotational coherent anti-Stokes spectroscopy applied for thermometry in a high-pressure burner,” (to be published), Combust. Flame (2007).

F. Vestin and P.-E. Bengtsson, “Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame,” submitted to Proceedings of the Combustion Institute (2008).

Wattson, R. B.

L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy-levels, intensities, and linewidths of atmospheric carbon-dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537-566 (1992).
[CrossRef]

Weikl, M. C.

White, A. H.

M. P. Bogaard, A. D. Buckingham, R. K. Pierens, and A. H. White, “Rayleigh-scattering depolarization ratio and molecular polarizability anisotropy for gases,” J. Chem. Soc. 74, 3008-3015 (1978).

Woodmansee, M. A.

Young, L. D. G.

L. S. Rothman and L. D. G. Young, “Infrared energy-levels and intensities of carbon-dioxide II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505-524 (1981).
[CrossRef]

Appl. Opt.

M. Alden, P. E. Bengtsson, H. Edner, S. Kroll, and D. Nilsson, “Rotational CARS--a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206-3219 (1989).

M. Alden, P. E. Bengtsson, and H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493-4500 (1986).

M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust gas recirculation measurements in a homogeneous charge compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006).
[CrossRef]

M. Schenk, A. Thumann, T. Seeger, and A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for determining single-shot simultaneous temperature and relative N2-O2 concentration,” Appl. Opt. 37, 5659-5671 (1998).

M. Afzelius, C. Brackmann, F. Vestin, and P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664-6672(2004).
[CrossRef]

M. Schenk, T. Seeger, and A. Leipertz, “Time-resolved CO2 thermometry for pressures as great as 5 MPa by use of pure rotational coherent anti-Stokes Raman scattering,” Appl. Opt. 44, 6526-6536 (2005).
[CrossRef]

M. Schenk, T. Seeger, and A. Leipertz, “Simultaneous and time-resolved temperature and relative CO2─N2 and O2-CO2-N2 concentration measurements with pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 44, 5582-5593 (2005).
[CrossRef]

M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “Development of high-resolution N2 coherent anti-Stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows,” Appl. Opt. 39 (33), 6243-6256 (2000).

T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665-2671 (1996).

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Improved temperature precision in rotational coherent anti-Stokes Raman spectroscopy with a modeless dye laser,” Appl. Opt. 45, 744-747 (2006).
[CrossRef]

Appl. Phys. B

M. Afzelius and P.-E. Bengtsson, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. I. Inter-branch interference effect,” Appl. Phys. B 75, 763-769 (2002).

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771-778 (2002).

L. Martinsson, P.-E. Bengtsson, and M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29-37 (1996).

J. Bood, P.-E. Bengtsson, and M. Aldén, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300-600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607-620 (2000).

Appl. Phys. Lett.

P. R. Regnier and J. P. E. Taran, “Possibility of measuring gas concentrations by stimulated anti-Stokes scattering,” Appl. Phys. Lett. 23, 240-242 (1973).
[CrossRef]

Combust. Sci. Technol.

P.-E. Bengtsson, L. Martinsson, M. Aldén, and S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129-140 (1992).
[CrossRef]

J. Chem. Phys.

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, and J. Bonamy, “A test of different rotational raman linewidth models--accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466-2477 (1993).
[CrossRef]

B. Lavorel, G. Millot, R. Saintloup, H. Berger, L. Bonamy, J. Bonamy, and D. Robert, “Study of collisional effects on band shapes of the ν1/ν2 fermi dyad in CO2 gas with stimulated Raman-spectroscopy .1. Rotational and vibrational-relaxation in the 2ν2 band,” J. Chem. Phys. 93, 2176-2184 (1990).
[CrossRef]

J. Chem. Soc.

M. P. Bogaard, A. D. Buckingham, R. K. Pierens, and A. H. White, “Rayleigh-scattering depolarization ratio and molecular polarizability anisotropy for gases,” J. Chem. Soc. 74, 3008-3015 (1978).

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, R. L. Hawkins, R. B. Wattson, and R. R. Gamache, “Energy-levels, intensities, and linewidths of atmospheric carbon-dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537-566 (1992).
[CrossRef]

L. S. Rothman and L. D. G. Young, “Infrared energy-levels and intensities of carbon-dioxide II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505-524 (1981).
[CrossRef]

J. Raman Spectrosc.

M. Afzelius and P.-E. Bengtsson, “Precision of single-shot dual-broadband rotational CARS thermometry with single-mode and multi-mode Nd : YAG lasers,” J. Raman Spectrosc. 34, 940-945 (2003).
[CrossRef]

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Improved species concentration measurements using a species-specific weighting procedure on rotational CARS spectra,” J. Raman Spectrosc. 36, 95-101 (2005).
[CrossRef]

J. Buldyreva, J. Bonamy, M. C. Weikl, F. Beyrau, T. Seeger, A. Leipertz, F. Vestin, M. Afzelius, J. Bood, and P.-E. Bengtsson, “Linewidth modelling of C2H2-N2 mixtures tested by rotational CARS measurements,” J. Raman Spectrosc. 37, 647-654 (2006).
[CrossRef]

Meas. Sci. Technol.

C. Brackmann, J. Bood, M. Afzelius, and P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13-R25 (2004).
[CrossRef]

Nature

I. R. Beattie, T. R. Gilson, and D. A. Greenhalgh, “Low-frequency coherent anti-Stokes Raman-spectroscopy of air,” Nature 276 (5686), 378-379 (1978).
[CrossRef]

Opt. Lett.

Phys. Scr.

M. Alden, H. Edner, and S. Svanberg, “Coherent anti-Stokes Raman-spectroscopy (CARS) applied in combustion probing,” Phys. Scr. 27, 29-38 (1983).
[CrossRef]

Proc. Combust. Instit.

F. Vestin, M. Afzelius, C. Brackmann, and P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Instit. 30, 1673-1680 (2005).

F. Vestin, M. Afzelius, and P.-E. Bengtsson, “Development of Rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Instit. 31, 833-840 (2007).

Other

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, Combustion Science and Technology book series, 2nd ed. (Gordon & Breach, 1996), Vol. 3.

D. A. Greenhalgh, Quantitative CARS Spectroscopy, Advances in Non-Linear Spectroscopy (Wiley, 1988), pp. 193-251.

J. Bood, P.-E. Bengtsson, and M. Aldén, “Non-intrusive temperature and oxygen concentration measurements in a catalytic combustor using rotational coherent anti-Stokes Raman spectroscopy,” ASME 99-GT-114 (1999).

F. Vestin and P.-E. Bengtsson, “Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame,” submitted to Proceedings of the Combustion Institute (2008).

G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules, Molecular Spectra and Molecular Structure (Krieger, 1991), Vol. III.

F. Vestin, D. Sedarsky, R. Collin, M. Aldén, M. Linne, and P.-E. Bengtsson, “Rotational coherent anti-Stokes spectroscopy applied for thermometry in a high-pressure burner,” (to be published), Combust. Flame (2007).

G. Herzberg, Spectra of Diatomic Molecules, Molecular spectra and molecular structure (Robert E. Krieger, 1989), Vol. I.

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Molecular Spectra and Molecular Structure (Van Nostrand, 1945), Vol. II.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Number of vibrational states needed to model 95% of the vibrational partition function as a function of temperature.

Fig. 2
Fig. 2

Single-shot spectra recorded in pure CO 2 at 294, 646, and 947 K . The evaluated temperatures were 298, 643, and 935 K , respectively.

Fig. 3
Fig. 3

Evaluated temperature as a function of the measured thermocouple temperature. Evaluations of measurements with single-mode (circle) and multimode (solid square) Nd:YAG lasers are shown for comparison, with the corresponding standard deviation of the 500 single shots as error bars.

Fig. 4
Fig. 4

Standard deviation of 500 single shots as a function of measured thermocouple temperature. Series performed with single-mode (circle) and multimode (solid square) Nd:YAG lasers are compared. The solid circles represent the standard deviation for the single-mode spectra when weighting has been applied in the evaluation for one measurement series.

Fig. 5
Fig. 5

Averaged rotational CARS spectra recorded over 200 single shots in the product gas ( 10 mm above burner) of a premixed CO/air flame on a McKenna burner at an equivalence ratio of (a) 1.3 and (b) 2.5. The difference between the experimental and best-fit theoretical spectra is shown below each spectrum. The evaluated temperature was 1971 K for the top spectrum and 1667 K for the lower spectrum. The evaluated relative CO 2 / N 2 - concentration was found to be 27.1% for the top and 21.8% for the lower spectrum. The calculated reference concentrations were 31.2% and 22.7%, respectively.

Fig. 6
Fig. 6

Evaluated temperature as a function of the equivalence ratio in the product gas of premixed CO/air -flames stabilized on a McKenna burner.

Fig. 7
Fig. 7

Evaluated CO 2 concentration (solid circle) as a function of equivalence ratio. Results are compared to the calculated CO 2 concentration in the product gas (open circle).

Fig. 8
Fig. 8

Evaluated CO 2 concentration (solid circle) as a function of polarizability anisotropy for a CO/air flame with an equivalence ratio of 1.2. The calculated reference concentration is shown as a solid triangle for the value of the polarizability anisotropy found in [29].

Tables (1)

Tables Icon

Table 1 Molecular Constants for the Lowest 20 Vibrational States for CO 2 [26] a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

χ ( 3 ) = χ n r + n [ v ] J a J , J + 2 ω J , J + 2 ω 1 + ω 2 ( i / 2 ) p Γ J , J + 2 ,
a J , J + 2 = 4 45 N ζ 2 b J J + 2 Δ ρ J , J + 2 F ( J ) ,
Δ ρ J , J + 2 = g [ v ] , J ( 2 J + 1 ) Q J ( e E ( [ v ] , J ) / k T e E ( [ v ] , J + 2 ) / k T )
E [ v ] ( J ) = B [ v ] J ( J + 1 ) D [ v ] J 2 ( J + 1 ) 2 + H [ v ] J 3 ( J + 1 ) 3 .
ψ = ψ electronic ψ vibration ψ rotation ψ nuclear spin .

Metrics