Abstract

A semianalytical model, named APOM (aerosol plume optical model) and predicting the radiative effects of aerosol plumes in the spectral range [0.4,2.5μm], is presented in the case of nadir viewing. It is devoted to the analysis of plumes arising from single strong emission events (high optical depths) such as fires or industrial discharges. The scene is represented by a standard atmosphere (molecules and natural aerosols) on which a plume layer is added at the bottom. The estimated at-sensor reflectance depends on the atmosphere without plume, the solar zenith angle, the plume optical properties (optical depth, single-scattering albedo, and asymmetry parameter), the ground reflectance, and the wavelength. Its mathematical expression as well as its numerical coefficients are derived from MODTRAN4 radiative transfer simulations. The DISORT option is used with 16 fluxes to provide a sufficiently accurate calculation of multiple scattering effects that are important for dense smokes. Model accuracy is assessed by using a set of simulations performed in the case of biomass burning and industrial plumes. APOM proves to be accurate and robust for solar zenith angles between 0° and 60° whatever the sensor altitude, the standard atmosphere, for plume phase functions defined from urban and rural models, and for plume locations that extend from the ground to a height below 3km. The modeling errors in the at-sensor reflectance are on average below 0.002. They can reach values of 0.01 but correspond to low relative errors then (below 3% on average). This model can be used for forward modeling (quick simulations of multi/hyperspectral images and help in sensor design) as well as for the retrieval of the plume optical properties from remotely sensed images.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997).
    [CrossRef]
  2. Y. J. Kaufman, D. Tanré, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-223 (2002).
  3. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377-445 (1908).
  4. Y. J. Kaufman and C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-ir satellite imagery,” Int. J. Remote Sens. 9, 1357-1381 (1988).
    [CrossRef]
  5. Y. J. Kaufman, A. Wald, L. Remer, B. Gao, R. Li, and L. Flynn, “The modis 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286-1297 (1997).
  6. J. Martonchik, D. Diner, R. Kahn, T. Ackerman, M. Verstraete, B. Pinty, and H. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imagery,” IEEE Trans. Geosci. Remote Sens. 36, 1212-1227 (1998).
  7. J. Veefkind, G. de Leeuw, P. Stammes, and R. Koeljemeier, “Regional distribution of aerosol over land derived from ASTR-2 and GOME,” Remote Sens. Environ. 74, 377-386(2000).
    [CrossRef]
  8. M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997).
    [CrossRef]
  9. D. Winker, M. Vaughan, and W. Hunt, “The CALIPSO mission and initial results from CALIOP,” Proc. SPIE 6409, 1-8(2006).
  10. H. Akimoto, “Global air quality and pollution,” Science 302, 1716-1719 (2003).
    [CrossRef]
  11. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502-2509 (1988).
  12. J. Fischer and H. Grassl, “Detection of cloud-top height from reflected radiances within the oxygen A band. Part 1. Theoretical studies,” J. Appl. Meteorol. 30, 1245-1259 (1991).
  13. F. Fischer, L. Schuller, and R. Preusker, “Cloud top pressure,” MERIS Algorithm Theoretical Basis Doc. ATBD 2.3 (Free University of Berlin, (2000).
  14. F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).
  15. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. I. A semianalytical model,” Appl. Opt. 37, 6329-6338 (1998).
  16. S. Jacquemoud, F. Baret, B. Andrieu, F. M. Danson, and K. Jaggard, “Extraction of vegetation biophysical parameters by inversion of the prospect+sail models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors,” Remote Sens. Environ. 52, 163-172 (1995).
  17. A. A. Kokhanovsky and V. V. Rozanov, “The physical parametrization of the top-of-atmosphere reflection function for a cloudy atmosphere-underlying surface system: the oxygen A-band case study,” J. Quant. Spectrosc. Radiat. Transfer 85, 35-55 (2004).
    [CrossRef]
  18. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  19. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University Press, 1999).
  20. N. F. Larsen and K. Stamnes, “Use of shadows to retrieve water vapor in hazy atmospheres,” Appl. Opt. 44, 6986-6994(2005).
    [CrossRef]
  21. K. Stamnes, “Reflection and transmission by a vertically inhomogeneous planetary atmosphere,” Planet. Space Sci. 30, 727-732 (1982).
    [CrossRef]
  22. V. V. Rozanov and A. A. Kokhanovsky, “On the molecular-aerosol scattering coupling in remote sensing of aerosol from space,” IEEE Trans. Geosci. Remote Sens. 43, 1536-1541(2005).
  23. E. P. Shettle and R. W. Fenn, Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties (Air Force Geophysics Laboratory, 1979).
  24. J. S. Reid, R. Koppmann, T. F. Eck, and D. P. Eleuterio, “A review of biomass burning emissions. Part II: intensive physical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5135-5200 (2004).
  25. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of Absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
    [CrossRef]
  26. M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, and J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73-97 (2003).
    [CrossRef]
  27. I. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70-83 (1941).
  28. L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM Trans. Math. Softw. 4, 34-50 (1978).
    [CrossRef]
  29. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).
  30. J. Trentmann, M. O. Andreae, H.-F. Graf, P. V. Hobbs, R. D. Ottmar, and T. Trautmann, “Simulation of a biomass burning plume: comparison of model results with observations,” J. Geophys. Res. 107 (2002).
    [CrossRef]
  31. R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothmann, E. P. Shettle, and F. E. Volz, Handbook of Geophysics and the Space Environment, Optical and Infrared Properties of the Atmosphere (A. S. Jursa, 1985).
  32. R. A. Sutherland and R. K. Khanna, “Optical properties of organic-based aerosols produced by burning vegetation,” Aerosol Sci. Technol. 14, 331-342 (1991).
    [CrossRef]
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  34. J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions. Part iii. Intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5201-5260 (2004).
  35. A. Alakian, R. Marion, and X. Briottet, “Hyperspectral remote sensing of biomass burning aerosol plumes: sensitivity to optical properties modeling,” Proc. SPIE 6362, 63620D (2006).
    [CrossRef]
  36. A. Angström, “On the atmospheric transmission of Sun radiation and on dust in the air,” Geogr. Ann. 12, 130-159 (1929).
  37. M. D. King and D. M. Byrne, “A method for inferring total ozone content from spectral variation of total optical depth obtained with a solar radiometer,” J. Amos. Sci. 33, 2242-2251(1976).
  38. S. Bojinski, D. Schläpfer, M. E. Schaepman, and J. Keller, “Aerosol mapping over rugged heterogeneous terrain with imaging spectrometer data,” Proc. SPIE 4816, 108-1199 (2002).

2006 (2)

D. Winker, M. Vaughan, and W. Hunt, “The CALIPSO mission and initial results from CALIOP,” Proc. SPIE 6409, 1-8(2006).

A. Alakian, R. Marion, and X. Briottet, “Hyperspectral remote sensing of biomass burning aerosol plumes: sensitivity to optical properties modeling,” Proc. SPIE 6362, 63620D (2006).
[CrossRef]

2005 (2)

V. V. Rozanov and A. A. Kokhanovsky, “On the molecular-aerosol scattering coupling in remote sensing of aerosol from space,” IEEE Trans. Geosci. Remote Sens. 43, 1536-1541(2005).

N. F. Larsen and K. Stamnes, “Use of shadows to retrieve water vapor in hazy atmospheres,” Appl. Opt. 44, 6986-6994(2005).
[CrossRef]

2004 (3)

A. A. Kokhanovsky and V. V. Rozanov, “The physical parametrization of the top-of-atmosphere reflection function for a cloudy atmosphere-underlying surface system: the oxygen A-band case study,” J. Quant. Spectrosc. Radiat. Transfer 85, 35-55 (2004).
[CrossRef]

J. S. Reid, R. Koppmann, T. F. Eck, and D. P. Eleuterio, “A review of biomass burning emissions. Part II: intensive physical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5135-5200 (2004).

J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions. Part iii. Intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5201-5260 (2004).

2003 (2)

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, and J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73-97 (2003).
[CrossRef]

H. Akimoto, “Global air quality and pollution,” Science 302, 1716-1719 (2003).
[CrossRef]

2002 (4)

Y. J. Kaufman, D. Tanré, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-223 (2002).

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of Absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

J. Trentmann, M. O. Andreae, H.-F. Graf, P. V. Hobbs, R. D. Ottmar, and T. Trautmann, “Simulation of a biomass burning plume: comparison of model results with observations,” J. Geophys. Res. 107 (2002).
[CrossRef]

S. Bojinski, D. Schläpfer, M. E. Schaepman, and J. Keller, “Aerosol mapping over rugged heterogeneous terrain with imaging spectrometer data,” Proc. SPIE 4816, 108-1199 (2002).

2000 (1)

J. Veefkind, G. de Leeuw, P. Stammes, and R. Koeljemeier, “Regional distribution of aerosol over land derived from ASTR-2 and GOME,” Remote Sens. Environ. 74, 377-386(2000).
[CrossRef]

1998 (3)

J. Martonchik, D. Diner, R. Kahn, T. Ackerman, M. Verstraete, B. Pinty, and H. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imagery,” IEEE Trans. Geosci. Remote Sens. 36, 1212-1227 (1998).

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. I. A semianalytical model,” Appl. Opt. 37, 6329-6338 (1998).

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

1997 (3)

Y. J. Kaufman, A. Wald, L. Remer, B. Gao, R. Li, and L. Flynn, “The modis 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286-1297 (1997).

M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997).
[CrossRef]

Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997).
[CrossRef]

1995 (1)

S. Jacquemoud, F. Baret, B. Andrieu, F. M. Danson, and K. Jaggard, “Extraction of vegetation biophysical parameters by inversion of the prospect+sail models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors,” Remote Sens. Environ. 52, 163-172 (1995).

1991 (2)

J. Fischer and H. Grassl, “Detection of cloud-top height from reflected radiances within the oxygen A band. Part 1. Theoretical studies,” J. Appl. Meteorol. 30, 1245-1259 (1991).

R. A. Sutherland and R. K. Khanna, “Optical properties of organic-based aerosols produced by burning vegetation,” Aerosol Sci. Technol. 14, 331-342 (1991).
[CrossRef]

1988 (2)

K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502-2509 (1988).

Y. J. Kaufman and C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-ir satellite imagery,” Int. J. Remote Sens. 9, 1357-1381 (1988).
[CrossRef]

1982 (1)

K. Stamnes, “Reflection and transmission by a vertically inhomogeneous planetary atmosphere,” Planet. Space Sci. 30, 727-732 (1982).
[CrossRef]

1978 (1)

L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM Trans. Math. Softw. 4, 34-50 (1978).
[CrossRef]

1976 (1)

M. D. King and D. M. Byrne, “A method for inferring total ozone content from spectral variation of total optical depth obtained with a solar radiometer,” J. Amos. Sci. 33, 2242-2251(1976).

1941 (1)

I. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70-83 (1941).

1929 (1)

A. Angström, “On the atmospheric transmission of Sun radiation and on dust in the air,” Geogr. Ann. 12, 130-159 (1929).

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377-445 (1908).

Abreu, L. W.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

Acharya, P.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

Ackerman, T.

J. Martonchik, D. Diner, R. Kahn, T. Ackerman, M. Verstraete, B. Pinty, and H. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imagery,” IEEE Trans. Geosci. Remote Sens. 36, 1212-1227 (1998).

Akimoto, H.

H. Akimoto, “Global air quality and pollution,” Science 302, 1716-1719 (2003).
[CrossRef]

Alakian, A.

A. Alakian, R. Marion, and X. Briottet, “Hyperspectral remote sensing of biomass burning aerosol plumes: sensitivity to optical properties modeling,” Proc. SPIE 6362, 63620D (2006).
[CrossRef]

Anderson, G. P.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

Andreae, M. O.

J. Trentmann, M. O. Andreae, H.-F. Graf, P. V. Hobbs, R. D. Ottmar, and T. Trautmann, “Simulation of a biomass burning plume: comparison of model results with observations,” J. Geophys. Res. 107 (2002).
[CrossRef]

Andrieu, B.

S. Jacquemoud, F. Baret, B. Andrieu, F. M. Danson, and K. Jaggard, “Extraction of vegetation biophysical parameters by inversion of the prospect+sail models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors,” Remote Sens. Environ. 52, 163-172 (1995).

Angström, A.

A. Angström, “On the atmospheric transmission of Sun radiation and on dust in the air,” Geogr. Ann. 12, 130-159 (1929).

Aronsson, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

Baret, F.

S. Jacquemoud, F. Baret, B. Andrieu, F. M. Danson, and K. Jaggard, “Extraction of vegetation biophysical parameters by inversion of the prospect+sail models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors,” Remote Sens. Environ. 52, 163-172 (1995).

Berk, A.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

Bernstein, L. S.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bojinski, S.

S. Bojinski, D. Schläpfer, M. E. Schaepman, and J. Keller, “Aerosol mapping over rugged heterogeneous terrain with imaging spectrometer data,” Proc. SPIE 4816, 108-1199 (2002).

Boucher, O.

Y. J. Kaufman, D. Tanré, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-223 (2002).

Bouffiès, S.

M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997).
[CrossRef]

Bréon, F. M.

M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997).
[CrossRef]

Briottet, X.

A. Alakian, R. Marion, and X. Briottet, “Hyperspectral remote sensing of biomass burning aerosol plumes: sensitivity to optical properties modeling,” Proc. SPIE 6362, 63620D (2006).
[CrossRef]

Buriez, J. C.

M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997).
[CrossRef]

Byrne, D. M.

M. D. King and D. M. Byrne, “A method for inferring total ozone content from spectral variation of total optical depth obtained with a solar radiometer,” J. Amos. Sci. 33, 2242-2251(1976).

Carder, K. L.

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover, 1960).

Chazette, P.

M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997).
[CrossRef]

Chetwynd, J. H.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

Chippendale, B. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

Chovit, C. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

Chrien, T. G.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

Christopher, S. A.

J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions. Part iii. Intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5201-5260 (2004).

Clough, S. A.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothmann, E. P. Shettle, and F. E. Volz, Handbook of Geophysics and the Space Environment, Optical and Infrared Properties of the Atmosphere (A. S. Jursa, 1985).

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

Danson, F. M.

S. Jacquemoud, F. Baret, B. Andrieu, F. M. Danson, and K. Jaggard, “Extraction of vegetation biophysical parameters by inversion of the prospect+sail models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors,” Remote Sens. Environ. 52, 163-172 (1995).

de Leeuw, G.

J. Veefkind, G. de Leeuw, P. Stammes, and R. Koeljemeier, “Regional distribution of aerosol over land derived from ASTR-2 and GOME,” Remote Sens. Environ. 74, 377-386(2000).
[CrossRef]

Despiau, S.

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, and J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73-97 (2003).
[CrossRef]

Deuzé, J. L.

M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997).
[CrossRef]

Diner, D.

J. Martonchik, D. Diner, R. Kahn, T. Ackerman, M. Verstraete, B. Pinty, and H. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imagery,” IEEE Trans. Geosci. Remote Sens. 36, 1212-1227 (1998).

Dubovik, O.

J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions. Part iii. Intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5201-5260 (2004).

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, and J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73-97 (2003).
[CrossRef]

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of Absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Eastwood, M. L.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

Eck, T. F.

J. S. Reid, R. Koppmann, T. F. Eck, and D. P. Eleuterio, “A review of biomass burning emissions. Part II: intensive physical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5135-5200 (2004).

J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions. Part iii. Intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5201-5260 (2004).

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of Absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Eleuterio, D. P.

J. S. Reid, R. Koppmann, T. F. Eck, and D. P. Eleuterio, “A review of biomass burning emissions. Part II: intensive physical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5135-5200 (2004).

J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions. Part iii. Intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5201-5260 (2004).

Faust, J. A.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

Fenn, R. W.

E. P. Shettle and R. W. Fenn, Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties (Air Force Geophysics Laboratory, 1979).

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothmann, E. P. Shettle, and F. E. Volz, Handbook of Geophysics and the Space Environment, Optical and Infrared Properties of the Atmosphere (A. S. Jursa, 1985).

Fischer, F.

F. Fischer, L. Schuller, and R. Preusker, “Cloud top pressure,” MERIS Algorithm Theoretical Basis Doc. ATBD 2.3 (Free University of Berlin, (2000).

Fischer, J.

J. Fischer and H. Grassl, “Detection of cloud-top height from reflected radiances within the oxygen A band. Part 1. Theoretical studies,” J. Appl. Meteorol. 30, 1245-1259 (1991).

Flynn, L.

Y. J. Kaufman, A. Wald, L. Remer, B. Gao, R. Li, and L. Flynn, “The modis 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286-1297 (1997).

Frouin, R.

Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997).
[CrossRef]

Gallery, W. O.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothmann, E. P. Shettle, and F. E. Volz, Handbook of Geophysics and the Space Environment, Optical and Infrared Properties of the Atmosphere (A. S. Jursa, 1985).

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

Gao, B.

Y. J. Kaufman, A. Wald, L. Remer, B. Gao, R. Li, and L. Flynn, “The modis 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286-1297 (1997).

Good, R. E.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothmann, E. P. Shettle, and F. E. Volz, Handbook of Geophysics and the Space Environment, Optical and Infrared Properties of the Atmosphere (A. S. Jursa, 1985).

Gordon, H.

J. Martonchik, D. Diner, R. Kahn, T. Ackerman, M. Verstraete, B. Pinty, and H. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imagery,” IEEE Trans. Geosci. Remote Sens. 36, 1212-1227 (1998).

Gordon, H. R.

Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997).
[CrossRef]

Graf, H.-F.

J. Trentmann, M. O. Andreae, H.-F. Graf, P. V. Hobbs, R. D. Ottmar, and T. Trautmann, “Simulation of a biomass burning plume: comparison of model results with observations,” J. Geophys. Res. 107 (2002).
[CrossRef]

Grassl, H.

Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997).
[CrossRef]

J. Fischer and H. Grassl, “Detection of cloud-top height from reflected radiances within the oxygen A band. Part 1. Theoretical studies,” J. Appl. Meteorol. 30, 1245-1259 (1991).

Green, R. O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

Greenstein, J. L.

I. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70-83 (1941).

Hautecoeur, O.

M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997).
[CrossRef]

Henyey, I. G.

I. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70-83 (1941).

Herman, B. M.

Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997).
[CrossRef]

Herman, M.

M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997).
[CrossRef]

Hobbs, P. V.

J. Trentmann, M. O. Andreae, H.-F. Graf, P. V. Hobbs, R. D. Ottmar, and T. Trautmann, “Simulation of a biomass burning plume: comparison of model results with observations,” J. Geophys. Res. 107 (2002).
[CrossRef]

Holben, B.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of Absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Holben, B. N.

J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions. Part iii. Intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5201-5260 (2004).

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Hunt, W.

D. Winker, M. Vaughan, and W. Hunt, “The CALIPSO mission and initial results from CALIOP,” Proc. SPIE 6409, 1-8(2006).

Jacquemoud, S.

S. Jacquemoud, F. Baret, B. Andrieu, F. M. Danson, and K. Jaggard, “Extraction of vegetation biophysical parameters by inversion of the prospect+sail models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors,” Remote Sens. Environ. 52, 163-172 (1995).

Jaggard, K.

S. Jacquemoud, F. Baret, B. Andrieu, F. M. Danson, and K. Jaggard, “Extraction of vegetation biophysical parameters by inversion of the prospect+sail models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors,” Remote Sens. Environ. 52, 163-172 (1995).

Jain, A.

L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM Trans. Math. Softw. 4, 34-50 (1978).
[CrossRef]

Jayaweera, K.

Kahn, R.

J. Martonchik, D. Diner, R. Kahn, T. Ackerman, M. Verstraete, B. Pinty, and H. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imagery,” IEEE Trans. Geosci. Remote Sens. 36, 1212-1227 (1998).

Kaufman, Y. J.

Y. J. Kaufman, D. Tanré, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-223 (2002).

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of Absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Y. J. Kaufman, A. Wald, L. Remer, B. Gao, R. Li, and L. Flynn, “The modis 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286-1297 (1997).

Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997).
[CrossRef]

Y. J. Kaufman and C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-ir satellite imagery,” Int. J. Remote Sens. 9, 1357-1381 (1988).
[CrossRef]

Keller, J.

S. Bojinski, D. Schläpfer, M. E. Schaepman, and J. Keller, “Aerosol mapping over rugged heterogeneous terrain with imaging spectrometer data,” Proc. SPIE 4816, 108-1199 (2002).

Khanna, R. K.

R. A. Sutherland and R. K. Khanna, “Optical properties of organic-based aerosols produced by burning vegetation,” Aerosol Sci. Technol. 14, 331-342 (1991).
[CrossRef]

King, M. D.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of Absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997).
[CrossRef]

M. D. King and D. M. Byrne, “A method for inferring total ozone content from spectral variation of total optical depth obtained with a solar radiometer,” J. Amos. Sci. 33, 2242-2251(1976).

Kneizys, F. X.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothmann, E. P. Shettle, and F. E. Volz, Handbook of Geophysics and the Space Environment, Optical and Infrared Properties of the Atmosphere (A. S. Jursa, 1985).

Koeljemeier, R.

J. Veefkind, G. de Leeuw, P. Stammes, and R. Koeljemeier, “Regional distribution of aerosol over land derived from ASTR-2 and GOME,” Remote Sens. Environ. 74, 377-386(2000).
[CrossRef]

Kokhanovsky, A. A.

V. V. Rozanov and A. A. Kokhanovsky, “On the molecular-aerosol scattering coupling in remote sensing of aerosol from space,” IEEE Trans. Geosci. Remote Sens. 43, 1536-1541(2005).

A. A. Kokhanovsky and V. V. Rozanov, “The physical parametrization of the top-of-atmosphere reflection function for a cloudy atmosphere-underlying surface system: the oxygen A-band case study,” J. Quant. Spectrosc. Radiat. Transfer 85, 35-55 (2004).
[CrossRef]

Koppmann, R.

J. S. Reid, R. Koppmann, T. F. Eck, and D. P. Eleuterio, “A review of biomass burning emissions. Part II: intensive physical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5135-5200 (2004).

J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions. Part iii. Intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5201-5260 (2004).

Larsen, N. F.

Lasdon, L. S.

L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM Trans. Math. Softw. 4, 34-50 (1978).
[CrossRef]

Lee, Z.

Lenoble, J.

Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997).
[CrossRef]

Leroy, M.

M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997).
[CrossRef]

Li, R.

Y. J. Kaufman, A. Wald, L. Remer, B. Gao, R. Li, and L. Flynn, “The modis 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286-1297 (1997).

Mallet, M.

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, and J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73-97 (2003).
[CrossRef]

Marion, R.

A. Alakian, R. Marion, and X. Briottet, “Hyperspectral remote sensing of biomass burning aerosol plumes: sensitivity to optical properties modeling,” Proc. SPIE 6362, 63620D (2006).
[CrossRef]

Martonchik, J.

J. Martonchik, D. Diner, R. Kahn, T. Ackerman, M. Verstraete, B. Pinty, and H. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imagery,” IEEE Trans. Geosci. Remote Sens. 36, 1212-1227 (1998).

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377-445 (1908).

Mill, J. D.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothmann, E. P. Shettle, and F. E. Volz, Handbook of Geophysics and the Space Environment, Optical and Infrared Properties of the Atmosphere (A. S. Jursa, 1985).

Mobley, C. D.

Nakajima, T.

Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997).
[CrossRef]

Olah, M. R.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

Ottmar, R. D.

J. Trentmann, M. O. Andreae, H.-F. Graf, P. V. Hobbs, R. D. Ottmar, and T. Trautmann, “Simulation of a biomass burning plume: comparison of model results with observations,” J. Geophys. Res. 107 (2002).
[CrossRef]

Patch, J. S.

Pavri, B. E.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

Pinty, B.

J. Martonchik, D. Diner, R. Kahn, T. Ackerman, M. Verstraete, B. Pinty, and H. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imagery,” IEEE Trans. Geosci. Remote Sens. 36, 1212-1227 (1998).

Preusker, R.

F. Fischer, L. Schuller, and R. Preusker, “Cloud top pressure,” MERIS Algorithm Theoretical Basis Doc. ATBD 2.3 (Free University of Berlin, (2000).

Putaud, J. P.

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, and J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73-97 (2003).
[CrossRef]

Ratner, M.

L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM Trans. Math. Softw. 4, 34-50 (1978).
[CrossRef]

Reid, E. A.

J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions. Part iii. Intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5201-5260 (2004).

Reid, J. S.

J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions. Part iii. Intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5201-5260 (2004).

J. S. Reid, R. Koppmann, T. F. Eck, and D. P. Eleuterio, “A review of biomass burning emissions. Part II: intensive physical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5135-5200 (2004).

Remer, L.

Y. J. Kaufman, A. Wald, L. Remer, B. Gao, R. Li, and L. Flynn, “The modis 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286-1297 (1997).

Robertson, D. C.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

Roger, J. C.

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, and J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73-97 (2003).
[CrossRef]

Rothman, L. S.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

Rothmann, L. S.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothmann, E. P. Shettle, and F. E. Volz, Handbook of Geophysics and the Space Environment, Optical and Infrared Properties of the Atmosphere (A. S. Jursa, 1985).

Roujean, J. L.

M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997).
[CrossRef]

Rozanov, V. V.

V. V. Rozanov and A. A. Kokhanovsky, “On the molecular-aerosol scattering coupling in remote sensing of aerosol from space,” IEEE Trans. Geosci. Remote Sens. 43, 1536-1541(2005).

A. A. Kokhanovsky and V. V. Rozanov, “The physical parametrization of the top-of-atmosphere reflection function for a cloudy atmosphere-underlying surface system: the oxygen A-band case study,” J. Quant. Spectrosc. Radiat. Transfer 85, 35-55 (2004).
[CrossRef]

Sarture, C. M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

Schaepman, M. E.

S. Bojinski, D. Schläpfer, M. E. Schaepman, and J. Keller, “Aerosol mapping over rugged heterogeneous terrain with imaging spectrometer data,” Proc. SPIE 4816, 108-1199 (2002).

Schläpfer, D.

S. Bojinski, D. Schläpfer, M. E. Schaepman, and J. Keller, “Aerosol mapping over rugged heterogeneous terrain with imaging spectrometer data,” Proc. SPIE 4816, 108-1199 (2002).

Schuller, L.

F. Fischer, L. Schuller, and R. Preusker, “Cloud top pressure,” MERIS Algorithm Theoretical Basis Doc. ATBD 2.3 (Free University of Berlin, (2000).

Selby, J. E. A.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

Sendra, C.

Y. J. Kaufman and C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-ir satellite imagery,” Int. J. Remote Sens. 9, 1357-1381 (1988).
[CrossRef]

Shettle, E. P.

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

E. P. Shettle and R. W. Fenn, Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties (Air Force Geophysics Laboratory, 1979).

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothmann, E. P. Shettle, and F. E. Volz, Handbook of Geophysics and the Space Environment, Optical and Infrared Properties of the Atmosphere (A. S. Jursa, 1985).

Slutsker, I.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of Absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Smirnov, A.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of Absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Solis, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

Stammes, P.

J. Veefkind, G. de Leeuw, P. Stammes, and R. Koeljemeier, “Regional distribution of aerosol over land derived from ASTR-2 and GOME,” Remote Sens. Environ. 74, 377-386(2000).
[CrossRef]

Stamnes, K.

N. F. Larsen and K. Stamnes, “Use of shadows to retrieve water vapor in hazy atmospheres,” Appl. Opt. 44, 6986-6994(2005).
[CrossRef]

K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502-2509 (1988).

K. Stamnes, “Reflection and transmission by a vertically inhomogeneous planetary atmosphere,” Planet. Space Sci. 30, 727-732 (1982).
[CrossRef]

G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University Press, 1999).

Steward, R. G.

Sutherland, R. A.

R. A. Sutherland and R. K. Khanna, “Optical properties of organic-based aerosols produced by burning vegetation,” Aerosol Sci. Technol. 14, 331-342 (1991).
[CrossRef]

Tanré, D.

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of Absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

Y. J. Kaufman, D. Tanré, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-223 (2002).

Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997).
[CrossRef]

M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997).
[CrossRef]

Teillet, P. M.

Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997).
[CrossRef]

Thomas, G. E.

G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University Press, 1999).

Trautmann, T.

J. Trentmann, M. O. Andreae, H.-F. Graf, P. V. Hobbs, R. D. Ottmar, and T. Trautmann, “Simulation of a biomass burning plume: comparison of model results with observations,” J. Geophys. Res. 107 (2002).
[CrossRef]

Trentmann, J.

J. Trentmann, M. O. Andreae, H.-F. Graf, P. V. Hobbs, R. D. Ottmar, and T. Trautmann, “Simulation of a biomass burning plume: comparison of model results with observations,” J. Geophys. Res. 107 (2002).
[CrossRef]

Tsay, S.-C.

Vaughan, M.

D. Winker, M. Vaughan, and W. Hunt, “The CALIPSO mission and initial results from CALIOP,” Proc. SPIE 6409, 1-8(2006).

Veefkind, J.

J. Veefkind, G. de Leeuw, P. Stammes, and R. Koeljemeier, “Regional distribution of aerosol over land derived from ASTR-2 and GOME,” Remote Sens. Environ. 74, 377-386(2000).
[CrossRef]

Verstraete, M.

J. Martonchik, D. Diner, R. Kahn, T. Ackerman, M. Verstraete, B. Pinty, and H. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imagery,” IEEE Trans. Geosci. Remote Sens. 36, 1212-1227 (1998).

Volz, F. E.

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothmann, E. P. Shettle, and F. E. Volz, Handbook of Geophysics and the Space Environment, Optical and Infrared Properties of the Atmosphere (A. S. Jursa, 1985).

Wald, A.

Y. J. Kaufman, A. Wald, L. Remer, B. Gao, R. Li, and L. Flynn, “The modis 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286-1297 (1997).

Waren, A. D.

L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM Trans. Math. Softw. 4, 34-50 (1978).
[CrossRef]

Williams, O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

Winker, D.

D. Winker, M. Vaughan, and W. Hunt, “The CALIPSO mission and initial results from CALIOP,” Proc. SPIE 6409, 1-8(2006).

Wiscombe, W.

Zhang, J.

J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions. Part iii. Intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5201-5260 (2004).

ACM Trans. Math. Softw. (1)

L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner, “Design and testing of a generalized reduced gradient code for nonlinear programming,” ACM Trans. Math. Softw. 4, 34-50 (1978).
[CrossRef]

Aerosol Sci. Technol. (1)

R. A. Sutherland and R. K. Khanna, “Optical properties of organic-based aerosols produced by burning vegetation,” Aerosol Sci. Technol. 14, 331-342 (1991).
[CrossRef]

Ann. Phys. (Leipzig) (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377-445 (1908).

Appl. Opt. (3)

Astrophys. J. (1)

I. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70-83 (1941).

Atmos. Chem. Phys. Discuss. (2)

J. S. Reid, R. Koppmann, T. F. Eck, and D. P. Eleuterio, “A review of biomass burning emissions. Part II: intensive physical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5135-5200 (2004).

J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions. Part iii. Intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. Discuss. 4, 5201-5260 (2004).

Atmos. Res. (1)

M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, and J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73-97 (2003).
[CrossRef]

Geogr. Ann. (1)

A. Angström, “On the atmospheric transmission of Sun radiation and on dust in the air,” Geogr. Ann. 12, 130-159 (1929).

IEEE Trans. Geosci. Remote Sens. (3)

V. V. Rozanov and A. A. Kokhanovsky, “On the molecular-aerosol scattering coupling in remote sensing of aerosol from space,” IEEE Trans. Geosci. Remote Sens. 43, 1536-1541(2005).

Y. J. Kaufman, A. Wald, L. Remer, B. Gao, R. Li, and L. Flynn, “The modis 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35, 1286-1297 (1997).

J. Martonchik, D. Diner, R. Kahn, T. Ackerman, M. Verstraete, B. Pinty, and H. Gordon, “Techniques for the retrieval of aerosol properties over land and ocean using multiangle imagery,” IEEE Trans. Geosci. Remote Sens. 36, 1212-1227 (1998).

Int. J. Remote Sens. (1)

Y. J. Kaufman and C. Sendra, “Algorithm for automatic atmospheric corrections to visible and near-ir satellite imagery,” Int. J. Remote Sens. 9, 1357-1381 (1988).
[CrossRef]

J. Amos. Sci. (1)

M. D. King and D. M. Byrne, “A method for inferring total ozone content from spectral variation of total optical depth obtained with a solar radiometer,” J. Amos. Sci. 33, 2242-2251(1976).

J. Appl. Meteorol. (1)

J. Fischer and H. Grassl, “Detection of cloud-top height from reflected radiances within the oxygen A band. Part 1. Theoretical studies,” J. Appl. Meteorol. 30, 1245-1259 (1991).

J. Atmos. Sci. (1)

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of Absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002).
[CrossRef]

J. Geophys. Res. (3)

J. Trentmann, M. O. Andreae, H.-F. Graf, P. V. Hobbs, R. D. Ottmar, and T. Trautmann, “Simulation of a biomass burning plume: comparison of model results with observations,” J. Geophys. Res. 107 (2002).
[CrossRef]

Y. J. Kaufman, D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, “Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect,” J. Geophys. Res. 102, 14581-14599 (1997).
[CrossRef]

M. Leroy, J. L. Deuzé, F. M. Bréon, O. Hautecoeur, M. Herman, J. C. Buriez, D. Tanré, S. Bouffiès, P. Chazette, and J. L. Roujean, “Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS,” J. Geophys. Res. 102, 17023-17037 (1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

A. A. Kokhanovsky and V. V. Rozanov, “The physical parametrization of the top-of-atmosphere reflection function for a cloudy atmosphere-underlying surface system: the oxygen A-band case study,” J. Quant. Spectrosc. Radiat. Transfer 85, 35-55 (2004).
[CrossRef]

Nature (1)

Y. J. Kaufman, D. Tanré, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215-223 (2002).

Planet. Space Sci. (1)

K. Stamnes, “Reflection and transmission by a vertically inhomogeneous planetary atmosphere,” Planet. Space Sci. 30, 727-732 (1982).
[CrossRef]

Proc. SPIE (3)

A. Alakian, R. Marion, and X. Briottet, “Hyperspectral remote sensing of biomass burning aerosol plumes: sensitivity to optical properties modeling,” Proc. SPIE 6362, 63620D (2006).
[CrossRef]

D. Winker, M. Vaughan, and W. Hunt, “The CALIPSO mission and initial results from CALIOP,” Proc. SPIE 6409, 1-8(2006).

S. Bojinski, D. Schläpfer, M. E. Schaepman, and J. Keller, “Aerosol mapping over rugged heterogeneous terrain with imaging spectrometer data,” Proc. SPIE 4816, 108-1199 (2002).

Remote Sens. Environ. (3)

J. Veefkind, G. de Leeuw, P. Stammes, and R. Koeljemeier, “Regional distribution of aerosol over land derived from ASTR-2 and GOME,” Remote Sens. Environ. 74, 377-386(2000).
[CrossRef]

S. Jacquemoud, F. Baret, B. Andrieu, F. M. Danson, and K. Jaggard, “Extraction of vegetation biophysical parameters by inversion of the prospect+sail models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors,” Remote Sens. Environ. 52, 163-172 (1995).

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227-248 (1998).

Science (1)

H. Akimoto, “Global air quality and pollution,” Science 302, 1716-1719 (2003).
[CrossRef]

Other (7)

S. Chandrasekhar, Radiative Transfer (Dover, 1960).

G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University Press, 1999).

F. Fischer, L. Schuller, and R. Preusker, “Cloud top pressure,” MERIS Algorithm Theoretical Basis Doc. ATBD 2.3 (Free University of Berlin, (2000).

F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, “The MODTRAN 2/3 Report and LOWTRAN 7 MODEL,” Technical report, prepared by Ontar Corporation for PL/GPOS (1996).

R. W. Fenn, S. A. Clough, W. O. Gallery, R. E. Good, F. X. Kneizys, J. D. Mill, L. S. Rothmann, E. P. Shettle, and F. E. Volz, Handbook of Geophysics and the Space Environment, Optical and Infrared Properties of the Atmosphere (A. S. Jursa, 1985).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

E. P. Shettle and R. W. Fenn, Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties (Air Force Geophysics Laboratory, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

APOM principle. When adding the plume, changes in photons paths are taken into account by the equations of ρ atm , T atm , and S atm . At-sensor atmospheric terms ( ρ atm , T atm , S atm ) are modeled as combinations of standard atmospheric terms ( ρ atm , T 0 atm , S 0 atm ) and plume atmospheric terms ( ρ plume atm , T plume atm , S plume atm ). Standard terms are computed by considering the scene without plume and by taking into account gaseous and natural aerosol profiles from ground to sensor. Plume terms are computed from APOM coefficients.

Fig. 2
Fig. 2

Evolution of ρ atm ρ 0 atm as a function of τ ( ω 0 and g being fixed). (a)  g = 0.45 , ω 0 { 0.45 , 0.60 , 0.69 , 0.77 , 0.84 , 0.90 , 0.95 , 0.98 } (the higher ω 0 , the upper the curve), (b)  ω 0 = 0.84 , g { 0.01 , 0.10 , 0.20 , 0.30 , 0.45 , 0.60 , 0.75 , 0.90 } (the higher g, the lower the curve). In these simulations, nadir viewing sensor altitude is 20 km , standard atmosphere is 1976 U.S. Standard with no natural aerosol, solar zenith angle θ s is 15 ° , and aerosol plume phase function type is urban (as defined in MODTRAN4). Dependency on τ can be roughly modeled with a law in the form α ( 1 e β τ ) , α < 0 , β < 0 .

Fig. 3
Fig. 3

Surface α 0 ( ω 0 , g ) . The smooth behavior along ω 0 and g allows a fit using a polynomial approach.

Fig. 4
Fig. 4

Flowchart describing assessment method of APOM performances. For accuracy assessment, τ, ω 0 , g, and θ s are varying. For robustness assessment, the same parameters are varying as well as standard atmosphere, sensor altitude, plume location, and type of aerosol plume phase function.

Fig. 5
Fig. 5

Aerosol optical properties for (a) biomass burning plume (BC content of 10 % , r m = 0.15 μm , σ m = 1.65 and τ 550 = 0.8 ) and (b) industrial plume (AS particles, r m = 0.05 μm , σ m = 1.60 , and τ 550 = 0.8 ).

Fig. 6
Fig. 6

Comparison between MODTRAN4 and APOM simulations at θ s = 30 ° for ρ sensor in case of (a) biomass burning plume and (b) industrial plume (associated optical properties are represented in Fig. 5). For clarity, the represented spectral errors are multiplied by 10. In both cases, modeling errors are on average below 0.002. They reach a maximum of about 0.005 in (b), which corresponds to a relative error of 2%.

Fig. 7
Fig. 7

Comparison of (a)  ρ atm , (b)  T atm , (c)  S atm , and (d)  ρ sensor (for ρ = 0.3 ) values as computed by MODTRAN4 and by APOM for biomass burning and industrial plumes and for θ s between 0 ° and 60 ° . Computations performed outside and inside strong gaseous absorption bands are respectively represented in dark gray and light gray. Correlation coefficient is higher than 0.999 for every case.

Fig. 8
Fig. 8

Spectral errors between MODTRAN4 and APOM for (a)  ρ atm , (b)  T atm , (c)  S atm , and (d)  ρ sensor (for ρ = 0.3 ) for biomass burning and industrial plumes and for θ s between 0 ° and 60 ° . Mean values are represented by black dots.

Fig. 9
Fig. 9

Study of standard atmospheric model (see Fig. 8 for details). Errors are amplified inside strong gaseous absorption bands in comparison to 1976 U.S. standard model. This is due to different gases concentrations from one standard model to another.

Tables (4)

Tables Icon

Table 1 Aerosol Microphysical Properties Used to Model Optical Properties of Biomass Burning Particles and Industrial Particles

Tables Icon

Table 2 Mean Errors in ρ atm , T atm , S atm and ρ sensor for Different Solar Zenith Angles and Over Three Spectral Intervals a and Outside Strong Gaseous Absorption Bands b

Tables Icon

Table 3 Mean Errors in ρ atm , T atm , S atm , and ρ sensor over Three Spectral Intervals a outside Strong Gaseous Absorption Bands for Different Natural Aerosols b

Tables Icon

Table 4 Mean Errors in ρ atm , T atm , S atm , and ρ sensor over Three Spectral Intervals a outside Strong Gaseous Absorption Bands for Different Sensor Altitudes, Standard Atmospheric Models (No Natural Aerosol), Plume Phase Functions, and Plume Location b .

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ρ sensor = π L sensor μ s E s ,
ρ sensor = ρ atm + T atm ρ 1 S atm ρ ,
ρ atm ( τ , ω 0 , g , μ s ) = ρ 0 atm ( μ s ) + ρ plume atm ( τ , ω 0 , g , μ s ) ,
T atm ( τ , ω 0 , g , μ s ) = T 0 atm ( μ s ) T plume atm ( τ , ω 0 , g , μ s ) ,
S atm ( τ , ω 0 , g ) = S 0 atm + S plume atm ( τ , ω 0 , g ) ,
ρ plume atm ( τ , ω 0 , g , μ s ) = α 0 ( ω 0 , g ) [ 1 exp ( k = 1 N τ α k ( ω 0 , g , μ s ) τ k ) ] ,
T plume atm ( τ , ω 0 , g , μ s ) = exp ( k = 1 N τ γ k ( ω 0 , g , μ s ) τ k ) ,
S plume atm ( τ , ω 0 , g ) = β 0 ( ω 0 , g ) [ 1 exp ( k = 1 N τ β k ( ω 0 , g ) τ k ) ] ,
    k { 0 , , N τ } , α k ( ω 0 , g ) = 0 i N ω 0 j N g η i j k ω 0 i g j ,
ρ plume atm ( τ , ω 0 , g , μ s ) = ( i , j ) I × J a i j ω 0 i g j [ 1 exp ( ( i , j , k ) I × J × K ( b i j k + c i j k μ s k ) τ k ω 0 i g j ) ] ,
S plume atm ( τ , ω 0 , g ) = ( i , j ) I × J d i j ω 0 i g j [ 1 exp ( ( i , j , k ) I × J × K f i j k τ k ω 0 i g j ) ] ,
T plume atm ( τ , ω 0 , g , μ s ) = exp ( ( i , j , k ) I × J × K ( u i j k + v i j k μ s k ) τ k ω 0 i g j ) ,
a ^ i j ( λ 0 ) , b ^ i j k ( λ 0 ) , c ^ i j k ( λ 0 ) = Arg min a i j , b i j k , c i j k Δ ρ ( a i j , b i j k , c i j k ) ,
Δ ρ ( a i j , b i j k , c i j k ) = τ I τ ω 0 I ω g I g θ s I θ ( ρ MODTRAN atm ( τ , ω 0 , g , μ s ) f ρ ( a i j , b i j k , c i j k , τ , ω 0 , g , μ s ) ) 2 ,
d ρ sensor = d ρ atm + ( ρ U ) d T atm + ( T atm ρ 2 U 2 ) d S atm + ( T atm U 2 ) d ρ ,
d ρ sensor = d ρ atm + 0.3 d T atm + 0.1 T atm d S atm + 1.1 T atm d ρ .
τ ( λ ) = a 0 + a 1 ln λ + a 2 ln 2 λ , ω 0 ( λ ) = b 0 + b 1 ln λ + b 2 ln 2 λ , g ( λ ) = c 0 + c 1 λ ,

Metrics