Abstract

Two types of vertical surface emitting photonic crystal cavities based on beaming mechanism and coupled surface modes are studied. It is shown that vertical emission with a zero divergence angle and a high quality factor can be easily achieved by the back-to-back cavity design. The periodic modulation to the cavity surface alters nonradiative surface modes into radiative surface modes, and the constructive interference of the radiative waves gives rise to vertical emission and improves the quality of the output beam. A high quality factor can be attributed to the nonradiative surface mode on the cavity back whose small part of energy can be transferred into the cavity surface by coupling. The resonant property and the coupling efficiency of the cavities are investigated and optimal cavity configurations are obtained. These open coupled-cavities are good candidates of highly directional light sources.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  2. J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, Y. H. Lee, and D. H. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982-2984 (2000).
    [CrossRef]
  3. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032-3034 (2001).
    [CrossRef]
  4. A. Sugitatsu and S. Noda, “Room temperature operation of 2D photonic crystal slab defect-waveguide laser with optical pump,” Electron. Lett. 39, 213-215 (2003).
    [CrossRef]
  5. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with trianglar-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
    [CrossRef]
  6. M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78, 1325-1327 (2001).
    [CrossRef]
  7. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two- dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123-1125 (2001).
    [CrossRef] [PubMed]
  8. M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002).
    [CrossRef]
  9. J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016-3018 (2004).
    [CrossRef]
  10. S. Xiao and M. Qiu, “Surface-mode microcavity,” Appl. Phys. Lett. 87, 111102-1-3 (2005).
    [CrossRef]
  11. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18, 528-530 (1993).
    [CrossRef] [PubMed]
  12. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903(2004).
    [CrossRef] [PubMed]
  13. E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402-1-4 (2004).
    [CrossRef]
  14. E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Efficient coupling of light into and out of a photonic crystal waveguide via surface modes,” Photonics Nanostruct. Fundam. Appl. 2, 97-102 (2004).
    [CrossRef]
  15. W. Smigaj, “Model of light collimation by photonic crystal surface modes,” Phys. Rev. B 75, 205430-1-8 (2007).
    [CrossRef]
  16. I. Bulu, H. Caglayan, and E. Ozbay, “Beaming of light and enhanced transmission via surface modes of photonic crystals,” Opt. Lett. 30, 3078-3080 (2005).
    [CrossRef] [PubMed]
  17. D.-S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim, and Y.-H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901-3903(2002).
    [CrossRef]
  18. J. D. Joannopouls, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, 1995).
  19. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

2007 (1)

W. Smigaj, “Model of light collimation by photonic crystal surface modes,” Phys. Rev. B 75, 205430-1-8 (2007).
[CrossRef]

2005 (2)

2004 (4)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903(2004).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402-1-4 (2004).
[CrossRef]

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Efficient coupling of light into and out of a photonic crystal waveguide via surface modes,” Photonics Nanostruct. Fundam. Appl. 2, 97-102 (2004).
[CrossRef]

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

2003 (1)

A. Sugitatsu and S. Noda, “Room temperature operation of 2D photonic crystal slab defect-waveguide laser with optical pump,” Electron. Lett. 39, 213-215 (2003).
[CrossRef]

2002 (2)

M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002).
[CrossRef]

D.-S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim, and Y.-H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901-3903(2002).
[CrossRef]

2001 (3)

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78, 1325-1327 (2001).
[CrossRef]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two- dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

2000 (1)

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, Y. H. Lee, and D. H. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

1999 (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with trianglar-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

1993 (1)

Agio, M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903(2004).
[CrossRef] [PubMed]

Arjavalingam, G.

Benisty, H.

M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002).
[CrossRef]

Birner, A.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903(2004).
[CrossRef] [PubMed]

Brommer, K. D.

Bulu, I.

Caglayan, H.

Carlin, J.-F.

M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002).
[CrossRef]

Chutinan, A.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two- dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with trianglar-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

DeLaRue, R. M.

M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002).
[CrossRef]

Garcia-Vidal, F. J.

E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402-1-4 (2004).
[CrossRef]

García-Vidal, F. J.

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Efficient coupling of light into and out of a photonic crystal waveguide via surface modes,” Photonics Nanostruct. Fundam. Appl. 2, 97-102 (2004).
[CrossRef]

Gosele, U.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903(2004).
[CrossRef] [PubMed]

Han, I. Y.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, Y. H. Lee, and D. H. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Houdrè, R.

M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002).
[CrossRef]

Huh, J.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

Hwang, J. K.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, Y. H. Lee, and D. H. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Imada, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two- dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with trianglar-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Jang, D. H.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, Y. H. Lee, and D. H. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Joannopoulos, J. D.

Joannopouls, J. D.

J. D. Joannopouls, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, 1995).

Kim, C.-K.

D.-S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim, and Y.-H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901-3903(2002).
[CrossRef]

Kim, G. H.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kim, J. S.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

Kim, S. B.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

Kim, S. H.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

Kim, S.-H.

D.-S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim, and Y.-H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901-3903(2002).
[CrossRef]

Kramper, P.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903(2004).
[CrossRef] [PubMed]

Krauss, T. F.

M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, Y. H. Lee, and D. H. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Lee, Y.-H.

D.-S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim, and Y.-H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901-3903(2002).
[CrossRef]

Martin-Moreno, L.

E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402-1-4 (2004).
[CrossRef]

Martín-Moreno, L.

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Efficient coupling of light into and out of a photonic crystal waveguide via surface modes,” Photonics Nanostruct. Fundam. Appl. 2, 97-102 (2004).
[CrossRef]

Meade, R. D.

Mochizuki, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two- dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Moreno, E.

E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402-1-4 (2004).
[CrossRef]

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Efficient coupling of light into and out of a photonic crystal waveguide via surface modes,” Photonics Nanostruct. Fundam. Appl. 2, 97-102 (2004).
[CrossRef]

Muller, F.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903(2004).
[CrossRef] [PubMed]

Murata, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with trianglar-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Noda, S.

A. Sugitatsu and S. Noda, “Room temperature operation of 2D photonic crystal slab defect-waveguide laser with optical pump,” Electron. Lett. 39, 213-215 (2003).
[CrossRef]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two- dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with trianglar-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Notomi, M.

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78, 1325-1327 (2001).
[CrossRef]

O'Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Oesterle, U.

M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002).
[CrossRef]

Ozbay, E.

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Park, H. G.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

Park, H. K.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, Y. H. Lee, and D. H. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Park, H.-G.

D.-S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim, and Y.-H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901-3903(2002).
[CrossRef]

Qiu, M.

S. Xiao and M. Qiu, “Surface-mode microcavity,” Appl. Phys. Lett. 87, 111102-1-3 (2005).
[CrossRef]

Rappe, A. M.

Rattier, M.

M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002).
[CrossRef]

Robertson, W. M.

Ryu, H. Y.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, Y. H. Lee, and D. H. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Sandoghdar, V.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903(2004).
[CrossRef] [PubMed]

Sasaki, G.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with trianglar-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Smigaj, W.

W. Smigaj, “Model of light collimation by photonic crystal surface modes,” Phys. Rev. B 75, 205430-1-8 (2007).
[CrossRef]

Smith, C. J. M.

M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002).
[CrossRef]

Song, D. S.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, Y. H. Lee, and D. H. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Song, D.-S.

D.-S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim, and Y.-H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901-3903(2002).
[CrossRef]

Song, H. W.

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, Y. H. Lee, and D. H. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Soukoulis, C. M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903(2004).
[CrossRef] [PubMed]

Stanley, R.

M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002).
[CrossRef]

Sugitatsu, A.

A. Sugitatsu and S. Noda, “Room temperature operation of 2D photonic crystal slab defect-waveguide laser with optical pump,” Electron. Lett. 39, 213-215 (2003).
[CrossRef]

Suzuki, H.

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78, 1325-1327 (2001).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Tamamura, T.

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78, 1325-1327 (2001).
[CrossRef]

Tokuda, T.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with trianglar-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Wehrspohn, R. B.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903(2004).
[CrossRef] [PubMed]

Weisbuch, C.

M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002).
[CrossRef]

Winn, J. N.

J. D. Joannopouls, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, 1995).

Xiao, S.

S. Xiao and M. Qiu, “Surface-mode microcavity,” Appl. Phys. Lett. 87, 111102-1-3 (2005).
[CrossRef]

Yang, J. K.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Yokoyama, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two- dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (7)

J. K. Hwang, H. Y. Ryu, D. S. Song, I. Y. Han, H. W. Song, H. K. Park, Y. H. Lee, and D. H. Jang, “Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm,” Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, Y. H. Lee, and J. S. Kim, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Lett. 79, 3032-3034 (2001).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with trianglar-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett. 78, 1325-1327 (2001).
[CrossRef]

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016-3018 (2004).
[CrossRef]

S. Xiao and M. Qiu, “Surface-mode microcavity,” Appl. Phys. Lett. 87, 111102-1-3 (2005).
[CrossRef]

D.-S. Song, S.-H. Kim, H.-G. Park, C.-K. Kim, and Y.-H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901-3903(2002).
[CrossRef]

Electron. Lett. (1)

A. Sugitatsu and S. Noda, “Room temperature operation of 2D photonic crystal slab defect-waveguide laser with optical pump,” Electron. Lett. 39, 213-215 (2003).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

M. Rattier, T. F. Krauss, J.-F. Carlin, R. Stanley, U. Oesterle, R. Houdrè, C. J. M. Smith, R. M. DeLaRue, H. Benisty, and C. Weisbuch, “High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals,” Opt. Quantum Electron. 34, 79-89 (2002).
[CrossRef]

Photonics Nanostruct. Fundam. Appl. (1)

E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Efficient coupling of light into and out of a photonic crystal waveguide via surface modes,” Photonics Nanostruct. Fundam. Appl. 2, 97-102 (2004).
[CrossRef]

Phys. Rev. B (2)

W. Smigaj, “Model of light collimation by photonic crystal surface modes,” Phys. Rev. B 75, 205430-1-8 (2007).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, “Enhanced transmission and beaming of light via photonic crystal surface modes,” Phys. Rev. B 69, 121402-1-4 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, “Highly directional emission from photonic crystal waveguides of subwavelength width,” Phys. Rev. Lett. 92, 113903(2004).
[CrossRef] [PubMed]

Science (2)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two- dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123-1125 (2001).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopouls, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, 1995).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Dispersion curve of PC surface modes for (a) TM modes of the square rod-type PC and (b) TE modes of the triangle air holes PC with different d, where d represents the distance between the two truncated PC interfaces.

Fig. 2
Fig. 2

Structures of 2D PC coupled-cavities, (a)  C 1 and (b)  C 2 . The length of the truncated PC surface is 20 a and the modulated periodic is Λ = 2 a . M represents total reflector.

Fig. 3
Fig. 3

(a) Resonant spectra of C 1 with d = 4 a , 5 a , and 6 a . For each case, the two resonant peaks at the band edge in the SC and EC are marked by S 1 and S 1 , S 2 and S 2 , and S 3 and S 3 , respectively. (b) Resonant spectra of C 2 with d = 3 τ , 4 τ , and 5 τ . For each case, the two resonant peaks at the band edge in the SC and EC are marked by T 1 and T 1 , T 2 and T 2 , and T 3 and T 3 , respectively. The solid and dashed lines represent the resonant spectra of the SC and EC, respectively.

Fig. 4
Fig. 4

(a)-(c) The electric-field distributions ( E 2 ) in C 1 for d = 4 a , 5 a , and 6 a . (d)-(f) The coupling efficiency η between the two surfaces of C 1 for d = 4 a , 5 a , and 6 a .

Fig. 5
Fig. 5

(a) The magnetic-field distribution ( H 2 ) in C 2 with d = 3 τ . (b) The coupling efficiency ( η = | H EC | / | H SC | ) between the two surfaces of C 2 for d = 3 τ , 4 τ , and 5 τ .

Metrics