Abstract

We recently developed a time-resolved multispectral laser-induced fluorescence (LIF) imaging system capable of tunable wavelengths in the visible region for sample excitation and nanosecond-scale characterizations of fluorescence responses (lifetime imaging). Time-dependent fluorescence decay characteristics and fluorescence lifetime imaging of apples artificially contaminated with a range of diluted cow feces were investigated at 670 and 685nm emission bands obtained by 418, 530, and 630nm excitations. The results demonstrated that a 670nm emission with a 418nm excitation provided the greatest difference in time-dependent fluorescence responses between the apples and feces-treated spots. The versatilities of the time-resolved LIF imaging system, including fluorescence lifetime imaging of a relatively large biological object in a multispectral excitation-emission wavelength domain, were demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Mead, L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe, “Food-related illness and death in the United States,” Emerg. Infect. Dis. 5, 607-625 (1999).
    [CrossRef] [PubMed]
  2. M. S. Kim, A. M. Lefcourt, Y. R. Chen, I. Kim, K. Chao, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery-part II: application of fluorescence imaging,” Trans. ASAE 45, 2039-2047 (2002).
  3. M. S. Kim, A. M. Lefcourt, and Y. R. Chen, “Multispectral laser-induced fluorescence imaging system for large biological samples,” Appl. Opt. 42, 3927-3934 (2003).
    [CrossRef] [PubMed]
  4. A. M. Lefcourt, M. S. Kim, and Y. R. Chen, “Automated detection of fecal contamination of apples by multispectral laser-induced fluorescence imaging,” Appl. Opt. 42, 3935-3943(2003).
    [CrossRef] [PubMed]
  5. E. W. Chappelle, J. E. McMurtrey, and M. S. Kim, “Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis,” Remote Sens. Environ. 36, 213-218 (1991).
    [CrossRef]
  6. M. Lang, F. Stober, and H. K. Lichtenthaler, “Fluorescence emission spectra of plant leaves and plant constituents,” Radiat. Environ. Biophys. 30, 333-347 (1991).
    [CrossRef] [PubMed]
  7. C. Bushman and H. K. Lichtenthaler, “Principles and characteristics of multi-colour fluorescence imaging of plants,” J. Plant Physiol. 152, 297-314 (1998).
    [CrossRef]
  8. M. S. Kim, A. M. Lefcourt, and Y. R. Chen, “Optimal fluorescence excitation and emission bands for detection of fecal contamination,” J. Food Prot. 66, 1198-1207 (2003).
    [PubMed]
  9. M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, and J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” Proc. SPIE 3382, 100-111 (1998).
    [CrossRef]
  10. V. Tassetti, A. Hajri, M. Sowinska, S. Evrard, F. Heisel, L. Q. Cheng, J. A. Mieh, J. Marescaux, and M. Aprahamian, “In vivo laser-induced fluorescence imaging of a rat pancreatic cancer with pheophorbide-a,” Photochem. Photobiol. 65, 997-1006(1997).
    [CrossRef] [PubMed]
  11. J. I. Maarek, L. Marcu, W. J. Snyder, and W. S. Grundfest, “Time-resolved fluorescence spectra of arterial fluorescent compounds: reconstruction with the Laguerre expansion technique,” Photochem. Photobiol. 71, 178-187(2000).
    [CrossRef] [PubMed]
  12. P. Ilik, R. Kouril, J. Kruk, B. Mysliwa-Kurdziel, H. Popelkova, K. Strzalka, and J. Naus, “Origin of chlorophyll fluorescence in plants at 5575 °C,” Photochem. Photobiol. 77, 68-76 (2003).
    [CrossRef] [PubMed]
  13. S. Pelet, M. J. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807-2817 (2004).
    [CrossRef] [PubMed]
  14. J. Enderlein and R. Erdmann, “Fast fitting of multi-exponential decay curves,” Opt. Commun. 134, 371-378(1997).
    [CrossRef]
  15. A. M. Lefcourt, M. S. Kim, and Y. R. Chen, “Detection of fecal contamination on apples using nanosecond-scale time-resolved imaging of laser induced fluorescence,” Appl. Opt. 44, 1160-1170 (2005).
    [CrossRef] [PubMed]

2005 (1)

2004 (1)

S. Pelet, M. J. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807-2817 (2004).
[CrossRef] [PubMed]

2003 (4)

M. S. Kim, A. M. Lefcourt, and Y. R. Chen, “Optimal fluorescence excitation and emission bands for detection of fecal contamination,” J. Food Prot. 66, 1198-1207 (2003).
[PubMed]

P. Ilik, R. Kouril, J. Kruk, B. Mysliwa-Kurdziel, H. Popelkova, K. Strzalka, and J. Naus, “Origin of chlorophyll fluorescence in plants at 5575 °C,” Photochem. Photobiol. 77, 68-76 (2003).
[CrossRef] [PubMed]

M. S. Kim, A. M. Lefcourt, and Y. R. Chen, “Multispectral laser-induced fluorescence imaging system for large biological samples,” Appl. Opt. 42, 3927-3934 (2003).
[CrossRef] [PubMed]

A. M. Lefcourt, M. S. Kim, and Y. R. Chen, “Automated detection of fecal contamination of apples by multispectral laser-induced fluorescence imaging,” Appl. Opt. 42, 3935-3943(2003).
[CrossRef] [PubMed]

2002 (1)

M. S. Kim, A. M. Lefcourt, Y. R. Chen, I. Kim, K. Chao, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery-part II: application of fluorescence imaging,” Trans. ASAE 45, 2039-2047 (2002).

2000 (1)

J. I. Maarek, L. Marcu, W. J. Snyder, and W. S. Grundfest, “Time-resolved fluorescence spectra of arterial fluorescent compounds: reconstruction with the Laguerre expansion technique,” Photochem. Photobiol. 71, 178-187(2000).
[CrossRef] [PubMed]

1999 (1)

P. S. Mead, L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe, “Food-related illness and death in the United States,” Emerg. Infect. Dis. 5, 607-625 (1999).
[CrossRef] [PubMed]

1998 (2)

C. Bushman and H. K. Lichtenthaler, “Principles and characteristics of multi-colour fluorescence imaging of plants,” J. Plant Physiol. 152, 297-314 (1998).
[CrossRef]

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, and J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” Proc. SPIE 3382, 100-111 (1998).
[CrossRef]

1997 (2)

V. Tassetti, A. Hajri, M. Sowinska, S. Evrard, F. Heisel, L. Q. Cheng, J. A. Mieh, J. Marescaux, and M. Aprahamian, “In vivo laser-induced fluorescence imaging of a rat pancreatic cancer with pheophorbide-a,” Photochem. Photobiol. 65, 997-1006(1997).
[CrossRef] [PubMed]

J. Enderlein and R. Erdmann, “Fast fitting of multi-exponential decay curves,” Opt. Commun. 134, 371-378(1997).
[CrossRef]

1991 (2)

E. W. Chappelle, J. E. McMurtrey, and M. S. Kim, “Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis,” Remote Sens. Environ. 36, 213-218 (1991).
[CrossRef]

M. Lang, F. Stober, and H. K. Lichtenthaler, “Fluorescence emission spectra of plant leaves and plant constituents,” Radiat. Environ. Biophys. 30, 333-347 (1991).
[CrossRef] [PubMed]

Aprahamian, M.

V. Tassetti, A. Hajri, M. Sowinska, S. Evrard, F. Heisel, L. Q. Cheng, J. A. Mieh, J. Marescaux, and M. Aprahamian, “In vivo laser-induced fluorescence imaging of a rat pancreatic cancer with pheophorbide-a,” Photochem. Photobiol. 65, 997-1006(1997).
[CrossRef] [PubMed]

Bresee, J. S.

P. S. Mead, L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe, “Food-related illness and death in the United States,” Emerg. Infect. Dis. 5, 607-625 (1999).
[CrossRef] [PubMed]

Bushman, C.

C. Bushman and H. K. Lichtenthaler, “Principles and characteristics of multi-colour fluorescence imaging of plants,” J. Plant Physiol. 152, 297-314 (1998).
[CrossRef]

Chan, D.

M. S. Kim, A. M. Lefcourt, Y. R. Chen, I. Kim, K. Chao, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery-part II: application of fluorescence imaging,” Trans. ASAE 45, 2039-2047 (2002).

Chao, K.

M. S. Kim, A. M. Lefcourt, Y. R. Chen, I. Kim, K. Chao, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery-part II: application of fluorescence imaging,” Trans. ASAE 45, 2039-2047 (2002).

Chappelle, E. W.

E. W. Chappelle, J. E. McMurtrey, and M. S. Kim, “Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis,” Remote Sens. Environ. 36, 213-218 (1991).
[CrossRef]

Chen, Y. R.

A. M. Lefcourt, M. S. Kim, and Y. R. Chen, “Detection of fecal contamination on apples using nanosecond-scale time-resolved imaging of laser induced fluorescence,” Appl. Opt. 44, 1160-1170 (2005).
[CrossRef] [PubMed]

M. S. Kim, A. M. Lefcourt, and Y. R. Chen, “Optimal fluorescence excitation and emission bands for detection of fecal contamination,” J. Food Prot. 66, 1198-1207 (2003).
[PubMed]

M. S. Kim, A. M. Lefcourt, and Y. R. Chen, “Multispectral laser-induced fluorescence imaging system for large biological samples,” Appl. Opt. 42, 3927-3934 (2003).
[CrossRef] [PubMed]

A. M. Lefcourt, M. S. Kim, and Y. R. Chen, “Automated detection of fecal contamination of apples by multispectral laser-induced fluorescence imaging,” Appl. Opt. 42, 3935-3943(2003).
[CrossRef] [PubMed]

M. S. Kim, A. M. Lefcourt, Y. R. Chen, I. Kim, K. Chao, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery-part II: application of fluorescence imaging,” Trans. ASAE 45, 2039-2047 (2002).

Cheng, L. Q.

V. Tassetti, A. Hajri, M. Sowinska, S. Evrard, F. Heisel, L. Q. Cheng, J. A. Mieh, J. Marescaux, and M. Aprahamian, “In vivo laser-induced fluorescence imaging of a rat pancreatic cancer with pheophorbide-a,” Photochem. Photobiol. 65, 997-1006(1997).
[CrossRef] [PubMed]

Decker, T.

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, and J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” Proc. SPIE 3382, 100-111 (1998).
[CrossRef]

Dietz, V.

P. S. Mead, L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe, “Food-related illness and death in the United States,” Emerg. Infect. Dis. 5, 607-625 (1999).
[CrossRef] [PubMed]

Eckert, C.

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, and J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” Proc. SPIE 3382, 100-111 (1998).
[CrossRef]

Enderlein, J.

J. Enderlein and R. Erdmann, “Fast fitting of multi-exponential decay curves,” Opt. Commun. 134, 371-378(1997).
[CrossRef]

Erdmann, R.

J. Enderlein and R. Erdmann, “Fast fitting of multi-exponential decay curves,” Opt. Commun. 134, 371-378(1997).
[CrossRef]

Evrard, S.

V. Tassetti, A. Hajri, M. Sowinska, S. Evrard, F. Heisel, L. Q. Cheng, J. A. Mieh, J. Marescaux, and M. Aprahamian, “In vivo laser-induced fluorescence imaging of a rat pancreatic cancer with pheophorbide-a,” Photochem. Photobiol. 65, 997-1006(1997).
[CrossRef] [PubMed]

Griffin, P. M.

P. S. Mead, L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe, “Food-related illness and death in the United States,” Emerg. Infect. Dis. 5, 607-625 (1999).
[CrossRef] [PubMed]

Grundfest, W. S.

J. I. Maarek, L. Marcu, W. J. Snyder, and W. S. Grundfest, “Time-resolved fluorescence spectra of arterial fluorescent compounds: reconstruction with the Laguerre expansion technique,” Photochem. Photobiol. 71, 178-187(2000).
[CrossRef] [PubMed]

Hajri, A.

V. Tassetti, A. Hajri, M. Sowinska, S. Evrard, F. Heisel, L. Q. Cheng, J. A. Mieh, J. Marescaux, and M. Aprahamian, “In vivo laser-induced fluorescence imaging of a rat pancreatic cancer with pheophorbide-a,” Photochem. Photobiol. 65, 997-1006(1997).
[CrossRef] [PubMed]

Heisel, F.

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, and J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” Proc. SPIE 3382, 100-111 (1998).
[CrossRef]

V. Tassetti, A. Hajri, M. Sowinska, S. Evrard, F. Heisel, L. Q. Cheng, J. A. Mieh, J. Marescaux, and M. Aprahamian, “In vivo laser-induced fluorescence imaging of a rat pancreatic cancer with pheophorbide-a,” Photochem. Photobiol. 65, 997-1006(1997).
[CrossRef] [PubMed]

Ilik, P.

P. Ilik, R. Kouril, J. Kruk, B. Mysliwa-Kurdziel, H. Popelkova, K. Strzalka, and J. Naus, “Origin of chlorophyll fluorescence in plants at 5575 °C,” Photochem. Photobiol. 77, 68-76 (2003).
[CrossRef] [PubMed]

Kim, I.

M. S. Kim, A. M. Lefcourt, Y. R. Chen, I. Kim, K. Chao, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery-part II: application of fluorescence imaging,” Trans. ASAE 45, 2039-2047 (2002).

Kim, M. S.

A. M. Lefcourt, M. S. Kim, and Y. R. Chen, “Detection of fecal contamination on apples using nanosecond-scale time-resolved imaging of laser induced fluorescence,” Appl. Opt. 44, 1160-1170 (2005).
[CrossRef] [PubMed]

M. S. Kim, A. M. Lefcourt, and Y. R. Chen, “Optimal fluorescence excitation and emission bands for detection of fecal contamination,” J. Food Prot. 66, 1198-1207 (2003).
[PubMed]

M. S. Kim, A. M. Lefcourt, and Y. R. Chen, “Multispectral laser-induced fluorescence imaging system for large biological samples,” Appl. Opt. 42, 3927-3934 (2003).
[CrossRef] [PubMed]

A. M. Lefcourt, M. S. Kim, and Y. R. Chen, “Automated detection of fecal contamination of apples by multispectral laser-induced fluorescence imaging,” Appl. Opt. 42, 3935-3943(2003).
[CrossRef] [PubMed]

M. S. Kim, A. M. Lefcourt, Y. R. Chen, I. Kim, K. Chao, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery-part II: application of fluorescence imaging,” Trans. ASAE 45, 2039-2047 (2002).

E. W. Chappelle, J. E. McMurtrey, and M. S. Kim, “Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis,” Remote Sens. Environ. 36, 213-218 (1991).
[CrossRef]

Kouril, R.

P. Ilik, R. Kouril, J. Kruk, B. Mysliwa-Kurdziel, H. Popelkova, K. Strzalka, and J. Naus, “Origin of chlorophyll fluorescence in plants at 5575 °C,” Photochem. Photobiol. 77, 68-76 (2003).
[CrossRef] [PubMed]

Kruk, J.

P. Ilik, R. Kouril, J. Kruk, B. Mysliwa-Kurdziel, H. Popelkova, K. Strzalka, and J. Naus, “Origin of chlorophyll fluorescence in plants at 5575 °C,” Photochem. Photobiol. 77, 68-76 (2003).
[CrossRef] [PubMed]

Laiho, L. H.

S. Pelet, M. J. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807-2817 (2004).
[CrossRef] [PubMed]

Lang, M.

M. Lang, F. Stober, and H. K. Lichtenthaler, “Fluorescence emission spectra of plant leaves and plant constituents,” Radiat. Environ. Biophys. 30, 333-347 (1991).
[CrossRef] [PubMed]

Lefcourt, A. M.

A. M. Lefcourt, M. S. Kim, and Y. R. Chen, “Detection of fecal contamination on apples using nanosecond-scale time-resolved imaging of laser induced fluorescence,” Appl. Opt. 44, 1160-1170 (2005).
[CrossRef] [PubMed]

M. S. Kim, A. M. Lefcourt, and Y. R. Chen, “Optimal fluorescence excitation and emission bands for detection of fecal contamination,” J. Food Prot. 66, 1198-1207 (2003).
[PubMed]

M. S. Kim, A. M. Lefcourt, and Y. R. Chen, “Multispectral laser-induced fluorescence imaging system for large biological samples,” Appl. Opt. 42, 3927-3934 (2003).
[CrossRef] [PubMed]

A. M. Lefcourt, M. S. Kim, and Y. R. Chen, “Automated detection of fecal contamination of apples by multispectral laser-induced fluorescence imaging,” Appl. Opt. 42, 3935-3943(2003).
[CrossRef] [PubMed]

M. S. Kim, A. M. Lefcourt, Y. R. Chen, I. Kim, K. Chao, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery-part II: application of fluorescence imaging,” Trans. ASAE 45, 2039-2047 (2002).

Lichtenthaler, H. K.

C. Bushman and H. K. Lichtenthaler, “Principles and characteristics of multi-colour fluorescence imaging of plants,” J. Plant Physiol. 152, 297-314 (1998).
[CrossRef]

M. Lang, F. Stober, and H. K. Lichtenthaler, “Fluorescence emission spectra of plant leaves and plant constituents,” Radiat. Environ. Biophys. 30, 333-347 (1991).
[CrossRef] [PubMed]

Maarek, J. I.

J. I. Maarek, L. Marcu, W. J. Snyder, and W. S. Grundfest, “Time-resolved fluorescence spectra of arterial fluorescent compounds: reconstruction with the Laguerre expansion technique,” Photochem. Photobiol. 71, 178-187(2000).
[CrossRef] [PubMed]

Marcu, L.

J. I. Maarek, L. Marcu, W. J. Snyder, and W. S. Grundfest, “Time-resolved fluorescence spectra of arterial fluorescent compounds: reconstruction with the Laguerre expansion technique,” Photochem. Photobiol. 71, 178-187(2000).
[CrossRef] [PubMed]

Marescaux, J.

V. Tassetti, A. Hajri, M. Sowinska, S. Evrard, F. Heisel, L. Q. Cheng, J. A. Mieh, J. Marescaux, and M. Aprahamian, “In vivo laser-induced fluorescence imaging of a rat pancreatic cancer with pheophorbide-a,” Photochem. Photobiol. 65, 997-1006(1997).
[CrossRef] [PubMed]

McCaig, L. F.

P. S. Mead, L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe, “Food-related illness and death in the United States,” Emerg. Infect. Dis. 5, 607-625 (1999).
[CrossRef] [PubMed]

McMurtrey, J. E.

E. W. Chappelle, J. E. McMurtrey, and M. S. Kim, “Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis,” Remote Sens. Environ. 36, 213-218 (1991).
[CrossRef]

Mead, P. S.

P. S. Mead, L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe, “Food-related illness and death in the United States,” Emerg. Infect. Dis. 5, 607-625 (1999).
[CrossRef] [PubMed]

Mieh, J. A.

V. Tassetti, A. Hajri, M. Sowinska, S. Evrard, F. Heisel, L. Q. Cheng, J. A. Mieh, J. Marescaux, and M. Aprahamian, “In vivo laser-induced fluorescence imaging of a rat pancreatic cancer with pheophorbide-a,” Photochem. Photobiol. 65, 997-1006(1997).
[CrossRef] [PubMed]

Miehe, J.

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, and J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” Proc. SPIE 3382, 100-111 (1998).
[CrossRef]

Mysliwa-Kurdziel, B.

P. Ilik, R. Kouril, J. Kruk, B. Mysliwa-Kurdziel, H. Popelkova, K. Strzalka, and J. Naus, “Origin of chlorophyll fluorescence in plants at 5575 °C,” Photochem. Photobiol. 77, 68-76 (2003).
[CrossRef] [PubMed]

Naus, J.

P. Ilik, R. Kouril, J. Kruk, B. Mysliwa-Kurdziel, H. Popelkova, K. Strzalka, and J. Naus, “Origin of chlorophyll fluorescence in plants at 5575 °C,” Photochem. Photobiol. 77, 68-76 (2003).
[CrossRef] [PubMed]

Pelet, S.

S. Pelet, M. J. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807-2817 (2004).
[CrossRef] [PubMed]

Popelkova, H.

P. Ilik, R. Kouril, J. Kruk, B. Mysliwa-Kurdziel, H. Popelkova, K. Strzalka, and J. Naus, “Origin of chlorophyll fluorescence in plants at 5575 °C,” Photochem. Photobiol. 77, 68-76 (2003).
[CrossRef] [PubMed]

Previte, M. J.

S. Pelet, M. J. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807-2817 (2004).
[CrossRef] [PubMed]

Shapiro, C.

P. S. Mead, L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe, “Food-related illness and death in the United States,” Emerg. Infect. Dis. 5, 607-625 (1999).
[CrossRef] [PubMed]

Slutsker, L.

P. S. Mead, L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe, “Food-related illness and death in the United States,” Emerg. Infect. Dis. 5, 607-625 (1999).
[CrossRef] [PubMed]

Snyder, W. J.

J. I. Maarek, L. Marcu, W. J. Snyder, and W. S. Grundfest, “Time-resolved fluorescence spectra of arterial fluorescent compounds: reconstruction with the Laguerre expansion technique,” Photochem. Photobiol. 71, 178-187(2000).
[CrossRef] [PubMed]

So, P. T. C.

S. Pelet, M. J. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807-2817 (2004).
[CrossRef] [PubMed]

Sowinska, M.

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, and J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” Proc. SPIE 3382, 100-111 (1998).
[CrossRef]

V. Tassetti, A. Hajri, M. Sowinska, S. Evrard, F. Heisel, L. Q. Cheng, J. A. Mieh, J. Marescaux, and M. Aprahamian, “In vivo laser-induced fluorescence imaging of a rat pancreatic cancer with pheophorbide-a,” Photochem. Photobiol. 65, 997-1006(1997).
[CrossRef] [PubMed]

Stober, F.

M. Lang, F. Stober, and H. K. Lichtenthaler, “Fluorescence emission spectra of plant leaves and plant constituents,” Radiat. Environ. Biophys. 30, 333-347 (1991).
[CrossRef] [PubMed]

Strzalka, K.

P. Ilik, R. Kouril, J. Kruk, B. Mysliwa-Kurdziel, H. Popelkova, K. Strzalka, and J. Naus, “Origin of chlorophyll fluorescence in plants at 5575 °C,” Photochem. Photobiol. 77, 68-76 (2003).
[CrossRef] [PubMed]

Tassetti, V.

V. Tassetti, A. Hajri, M. Sowinska, S. Evrard, F. Heisel, L. Q. Cheng, J. A. Mieh, J. Marescaux, and M. Aprahamian, “In vivo laser-induced fluorescence imaging of a rat pancreatic cancer with pheophorbide-a,” Photochem. Photobiol. 65, 997-1006(1997).
[CrossRef] [PubMed]

Tauxe, R. V.

P. S. Mead, L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe, “Food-related illness and death in the United States,” Emerg. Infect. Dis. 5, 607-625 (1999).
[CrossRef] [PubMed]

Valcke, R.

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, and J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” Proc. SPIE 3382, 100-111 (1998).
[CrossRef]

Appl. Opt. (3)

Biophys. J. (1)

S. Pelet, M. J. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807-2817 (2004).
[CrossRef] [PubMed]

Emerg. Infect. Dis. (1)

P. S. Mead, L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin, and R. V. Tauxe, “Food-related illness and death in the United States,” Emerg. Infect. Dis. 5, 607-625 (1999).
[CrossRef] [PubMed]

J. Food Prot. (1)

M. S. Kim, A. M. Lefcourt, and Y. R. Chen, “Optimal fluorescence excitation and emission bands for detection of fecal contamination,” J. Food Prot. 66, 1198-1207 (2003).
[PubMed]

J. Plant Physiol. (1)

C. Bushman and H. K. Lichtenthaler, “Principles and characteristics of multi-colour fluorescence imaging of plants,” J. Plant Physiol. 152, 297-314 (1998).
[CrossRef]

Opt. Commun. (1)

J. Enderlein and R. Erdmann, “Fast fitting of multi-exponential decay curves,” Opt. Commun. 134, 371-378(1997).
[CrossRef]

Photochem. Photobiol. (3)

V. Tassetti, A. Hajri, M. Sowinska, S. Evrard, F. Heisel, L. Q. Cheng, J. A. Mieh, J. Marescaux, and M. Aprahamian, “In vivo laser-induced fluorescence imaging of a rat pancreatic cancer with pheophorbide-a,” Photochem. Photobiol. 65, 997-1006(1997).
[CrossRef] [PubMed]

J. I. Maarek, L. Marcu, W. J. Snyder, and W. S. Grundfest, “Time-resolved fluorescence spectra of arterial fluorescent compounds: reconstruction with the Laguerre expansion technique,” Photochem. Photobiol. 71, 178-187(2000).
[CrossRef] [PubMed]

P. Ilik, R. Kouril, J. Kruk, B. Mysliwa-Kurdziel, H. Popelkova, K. Strzalka, and J. Naus, “Origin of chlorophyll fluorescence in plants at 5575 °C,” Photochem. Photobiol. 77, 68-76 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, and J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” Proc. SPIE 3382, 100-111 (1998).
[CrossRef]

Radiat. Environ. Biophys. (1)

M. Lang, F. Stober, and H. K. Lichtenthaler, “Fluorescence emission spectra of plant leaves and plant constituents,” Radiat. Environ. Biophys. 30, 333-347 (1991).
[CrossRef] [PubMed]

Remote Sens. Environ. (1)

E. W. Chappelle, J. E. McMurtrey, and M. S. Kim, “Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis,” Remote Sens. Environ. 36, 213-218 (1991).
[CrossRef]

Trans. ASAE (1)

M. S. Kim, A. M. Lefcourt, Y. R. Chen, I. Kim, K. Chao, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery-part II: application of fluorescence imaging,” Trans. ASAE 45, 2039-2047 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the time-resolved laser induced fluorescence imaging system.

Fig. 2
Fig. 2

Normalized nanosecond-scale fluorescence decay curves of representative apple and a 1 20 dilution feces spot on an apple acquired at 670 nm with a 418 nm excitation. Graph also shows the excitation laser pulse profile.

Fig. 3
Fig. 3

Time-resolved F670 and F685 images spanning from 5 to 30 ns in 5 ns intervals for a representative apple artificially contaminated with the three feces dilutions, acquired using (a) 418, (b) 530, and (c)  630 nm excitations.

Fig. 4
Fig. 4

(a) F670 and (b) F685 false-color fluorescence lifetime images of the representative apple artificially contaminated with the three feces dilutions. Each image contains the same apple excited by 418, 530, and 630 nm from left to right.

Fig. 5
Fig. 5

Average fluorescence lifetimes for the apples and individual feces treatments at (a) F670 and (b) F685.

Fig. 6
Fig. 6

Fast and slow fluorescence decay lifetime values for the apples and individual feces treatments at (a) F670 and (b) F685.

Fig. 7
Fig. 7

Fraction (percent) contribution in fluorescence intensities responsible for the fast and slow lifetimes for the apples and individual feces treatments at (a) F670 and (b) F685.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F ( t ) = i = 1 n α i exp ( t τ i ) , where     α   is   the   amplitude , and τ   is   the   lifetime .

Metrics