Abstract

The need for the detection of chemical warfare agents (CWAs) is no longer confined to battlefield environments because of at least one confirmed terrorist attack, the Tokyo Subway [Emerg. Infect. Dis. 5, 513 (1999)] in 1995, and a suspected, i.e., a false-alarm of a CWA in the Russell Senate Office Building [Washington Post, 9 February 2006, p. B01]. Therefore, detection of CWAs with high sensitivity and low false-alarm rates is considered an important priority for ensuring public safety. We report a minimum detection level for a CWA simulant, dimethyl methyl phosphonate (DMMP), of <0.5ppb (parts in 109) by use of a widely tunable external grating cavity quantum cascade laser and photoacoustic spectroscopy. With interferents present in Santa Monica, California street air, we demonstrate a false-alarm rate of 1:106 at a detection threshold of 1.6ppb.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. B. Olson, “Aum Shinrikyo: once and future threat?” Emerg. Infect. Dis. 5, 513-516 (1999).
    [CrossRef] [PubMed]
  2. C. Williams, A. Lengel, and M. B. Sheridan, “Alarm prompts evacuation of Senate offices”, The Washington Post, February 9, 2006, p. B.01.
  3. M. E. Webber, M. B. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemical: simulation”, J. Appl. Phys. 97, 113101 (2005).
    [CrossRef]
  4. M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents”, Appl. Phys. Lett. 88, 044103 (2006).
    [CrossRef]
  5. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
    [CrossRef]
  6. C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers”, Electron. Lett. 43, 1025-1026 (2007).
    [CrossRef]
  7. M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers”, Proc. Nat. Acad. Sci. USA 103, 10846-10849 (2006).
    [CrossRef] [PubMed]
  8. S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, and F. R. Guenther, “Creation of 0.10-cm-1 resolution quantitative infrared spectral libraries for gas samples” Proc. SPIE 4577, 12-24 (2001).
    [CrossRef]
  9. M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
    [CrossRef] [PubMed]
  10. I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone”, Appl. Opt. 46, 6397-6404(2007).
    [CrossRef] [PubMed]
  11. “High production volume (HPV) challenge program: test plan for dimethyl methylphosphonate,” CAS No. 756-79-6 (AKZO Nobel Functional Chemicals LLC, 525 West Van Buren Street, Chicago, Ill. 60607, December 23, 2003).
  12. J. A. Decker and H. W. Rogers, “Revised airborne exposure limits for chemical warfare agents”, in Ecological Risks Associated with the Destruction of Chemical Weapons, NATO Security through Science Series (Springer, 2006) pp. 279-287.
    [CrossRef]
  13. “Airborne exposure limits for chemical warfare agents GA (Tabun), GB (Sarin) and VX”, Fed. Regist. 67, (5) 894-9012002.
  14. Final recommendations for protecting human health from potential adverse effects of exposure to agents GA (Tabun), GB (Sarin) and VX”, Fed. Regist. 68, (196) 58348-583502003.

2007 (2)

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers”, Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone”, Appl. Opt. 46, 6397-6404(2007).
[CrossRef] [PubMed]

2006 (4)

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers”, Proc. Nat. Acad. Sci. USA 103, 10846-10849 (2006).
[CrossRef] [PubMed]

M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents”, Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

2005 (1)

M. E. Webber, M. B. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemical: simulation”, J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

2001 (1)

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, and F. R. Guenther, “Creation of 0.10-cm-1 resolution quantitative infrared spectral libraries for gas samples” Proc. SPIE 4577, 12-24 (2001).
[CrossRef]

1999 (1)

K. B. Olson, “Aum Shinrikyo: once and future threat?” Emerg. Infect. Dis. 5, 513-516 (1999).
[CrossRef] [PubMed]

Capasso, F.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers”, Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

Chu, P. M.

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, and F. R. Guenther, “Creation of 0.10-cm-1 resolution quantitative infrared spectral libraries for gas samples” Proc. SPIE 4577, 12-24 (2001).
[CrossRef]

Decker, J. A.

J. A. Decker and H. W. Rogers, “Revised airborne exposure limits for chemical warfare agents”, in Ecological Risks Associated with the Destruction of Chemical Weapons, NATO Security through Science Series (Springer, 2006) pp. 279-287.
[CrossRef]

Diehl, L.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers”, Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

Dunayevskiy, I.

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone”, Appl. Opt. 46, 6397-6404(2007).
[CrossRef] [PubMed]

M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers”, Proc. Nat. Acad. Sci. USA 103, 10846-10849 (2006).
[CrossRef] [PubMed]

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

Faist, J.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Fan, J.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers”, Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

Gini, E.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Giovannini, M.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Go, R.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers”, Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone”, Appl. Opt. 46, 6397-6404(2007).
[CrossRef] [PubMed]

M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers”, Proc. Nat. Acad. Sci. USA 103, 10846-10849 (2006).
[CrossRef] [PubMed]

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

Guenther, F. R.

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, and F. R. Guenther, “Creation of 0.10-cm-1 resolution quantitative infrared spectral libraries for gas samples” Proc. SPIE 4577, 12-24 (2001).
[CrossRef]

Johnson, T. J.

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, and F. R. Guenther, “Creation of 0.10-cm-1 resolution quantitative infrared spectral libraries for gas samples” Proc. SPIE 4577, 12-24 (2001).
[CrossRef]

Lengel, A.

C. Williams, A. Lengel, and M. B. Sheridan, “Alarm prompts evacuation of Senate offices”, The Washington Post, February 9, 2006, p. B.01.

Macdonald, T.

M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents”, Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

Maulini, R.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Mohan, A.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Olson, K. B.

K. B. Olson, “Aum Shinrikyo: once and future threat?” Emerg. Infect. Dis. 5, 513-516 (1999).
[CrossRef] [PubMed]

Patel, C. K. N.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers”, Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone”, Appl. Opt. 46, 6397-6404(2007).
[CrossRef] [PubMed]

M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents”, Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers”, Proc. Nat. Acad. Sci. USA 103, 10846-10849 (2006).
[CrossRef] [PubMed]

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

M. E. Webber, M. B. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemical: simulation”, J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

Pflügl, C.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers”, Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

Prasanna, M.

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone”, Appl. Opt. 46, 6397-6404(2007).
[CrossRef] [PubMed]

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

Pushkarsky, M.

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers”, Proc. Nat. Acad. Sci. USA 103, 10846-10849 (2006).
[CrossRef] [PubMed]

Pushkarsky, M. B.

M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents”, Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

M. E. Webber, M. B. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemical: simulation”, J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

Rhoderick, G. C.

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, and F. R. Guenther, “Creation of 0.10-cm-1 resolution quantitative infrared spectral libraries for gas samples” Proc. SPIE 4577, 12-24 (2001).
[CrossRef]

Rogers, H. W.

J. A. Decker and H. W. Rogers, “Revised airborne exposure limits for chemical warfare agents”, in Ecological Risks Associated with the Destruction of Chemical Weapons, NATO Security through Science Series (Springer, 2006) pp. 279-287.
[CrossRef]

Sams, R. L.

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, and F. R. Guenther, “Creation of 0.10-cm-1 resolution quantitative infrared spectral libraries for gas samples” Proc. SPIE 4577, 12-24 (2001).
[CrossRef]

Sharpe, S. W.

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, and F. R. Guenther, “Creation of 0.10-cm-1 resolution quantitative infrared spectral libraries for gas samples” Proc. SPIE 4577, 12-24 (2001).
[CrossRef]

Sheridan, M. B.

C. Williams, A. Lengel, and M. B. Sheridan, “Alarm prompts evacuation of Senate offices”, The Washington Post, February 9, 2006, p. B.01.

Tanbun-Ek, T.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers”, Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

Tsekoun, A.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers”, Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go and C. K. N. Patel, “High sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone”, Appl. Opt. 46, 6397-6404(2007).
[CrossRef] [PubMed]

M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers”, Proc. Nat. Acad. Sci. USA 103, 10846-10849 (2006).
[CrossRef] [PubMed]

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

Wang, X

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers”, Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

Webber, M. E.

M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents”, Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

M. E. Webber, M. B. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemical: simulation”, J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

Williams, C.

C. Williams, A. Lengel, and M. B. Sheridan, “Alarm prompts evacuation of Senate offices”, The Washington Post, February 9, 2006, p. B.01.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. B. Pushkarsky, M. E. Webber, T. Macdonald, and C. K. N. Patel, “High-sensitivity, high-selectivity detection of chemical warfare agents”, Appl. Phys. Lett. 88, 044103 (2006).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2 to 10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Electron. Lett. (1)

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, “Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers”, Electron. Lett. 43, 1025-1026 (2007).
[CrossRef]

Emerg. Infect. Dis. (1)

K. B. Olson, “Aum Shinrikyo: once and future threat?” Emerg. Infect. Dis. 5, 513-516 (1999).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. E. Webber, M. B. Pushkarsky, and C. K. N. Patel, “Optical detection of chemical warfare agents and toxic industrial chemical: simulation”, J. Appl. Phys. 97, 113101 (2005).
[CrossRef]

Proc. Nat. Acad. Sci. USA (2)

M. Pushkarsky, A. Tsekoun, I. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers”, Proc. Nat. Acad. Sci. USA 103, 10846-10849 (2006).
[CrossRef] [PubMed]

M. Pushkarsky, I. Dunayevskiy, M. Prasanna, A. Tsekoun, R. Go, and C. K. N. Patel, “Sensitive detection of TNT” Proc. Nat. Acad. Sci. USA 103, 19630-19634 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, and F. R. Guenther, “Creation of 0.10-cm-1 resolution quantitative infrared spectral libraries for gas samples” Proc. SPIE 4577, 12-24 (2001).
[CrossRef]

Other (5)

“High production volume (HPV) challenge program: test plan for dimethyl methylphosphonate,” CAS No. 756-79-6 (AKZO Nobel Functional Chemicals LLC, 525 West Van Buren Street, Chicago, Ill. 60607, December 23, 2003).

J. A. Decker and H. W. Rogers, “Revised airborne exposure limits for chemical warfare agents”, in Ecological Risks Associated with the Destruction of Chemical Weapons, NATO Security through Science Series (Springer, 2006) pp. 279-287.
[CrossRef]

“Airborne exposure limits for chemical warfare agents GA (Tabun), GB (Sarin) and VX”, Fed. Regist. 67, (5) 894-9012002.

Final recommendations for protecting human health from potential adverse effects of exposure to agents GA (Tabun), GB (Sarin) and VX”, Fed. Regist. 68, (196) 58348-583502003.

C. Williams, A. Lengel, and M. B. Sheridan, “Alarm prompts evacuation of Senate offices”, The Washington Post, February 9, 2006, p. B.01.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fourier transform infrared spectroscopy (FTIR) analysis of the broadband output from the 9.6 μm QCL operating in a Fabry–Perot (FP) geometry ( 65 mW per facet from uncoated chirp).

Fig. 2
Fig. 2

Wavelength tuning characteristics and FTIR spectrum at six sample grating positions, showing maximum power available as the grating angle is changed.

Fig. 3
Fig. 3

Measured QCL-PAS spectrum of ammonia (red) and comparison with FTIR spectrum of ammonia (blue).

Fig. 4
Fig. 4

Measured QCL-PAS spectrum of 100 ppb DMMP in CDA overlaid on FTIR reference spectrum of DMMP.

Fig. 5
Fig. 5

Measured QCL-PAS signal as a function of DMMP concentration, showing a noise-limited minimum detection level of ~ 500 ppt with CDA.

Fig. 6
Fig. 6

Histograms of measured DMMP concentrations when analyzing Santa Monica street air without and with the use of the Smart Grid. Gaussian fits to the histograms provide 1 σ sensitivitities for the detection of DMMP in the two situations.

Fig. 7
Fig. 7

Alarm threshold for QCL-PAS detection of DMMP in Santa Monica street air as a function of probability of false-alarms (ROC curve) computed from the actual measurements shown in Figs. 6, left and right, with and without the use of the Smart Grid algorithm.

Metrics