Abstract

A self-seeded pulsed double-grating Ti:sapphire laser oscillator consisting of a grazing incidence cavity geometry with a pair of gratings and a standing-wave cavity pumped by a frequency-doubled Nd:YAG laser was developed and characterized. With self-seeding, narrow-linewidth single-longitudinal-mode (SLM) operation and SLM scanning were possible with a reduced lasing threshold, which was desirable for the intended applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. T. Greenland, “Laser isotope separation,” Contemp. Phys. 31, 405-424 (1990).
    [CrossRef]
  2. K. Tamura, “Single-longitudinal-mode scan of a pulsed double-grating Ti:sapphire oscillator,” Appl. Opt. 46, 5924-5927 (2007).
    [CrossRef] [PubMed]
  3. M. G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser,” Opt. Lett. 3, 138-140 (1978).
    [CrossRef] [PubMed]
  4. K. W. Kangas, D. D. Lowenthal, and C. H. Muller III, “Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser oscillator,” Opt. Lett. 14, 21-23 (1999).
    [CrossRef]
  5. I. Shoshan and U. P. Oppeneim, “The use of a diffraction grating as a beam expander in a dye laser cavity,” Opt. Commun. 25, 375-378 (1978).
    [CrossRef]
  6. D. J. Binks, D. K. Ko, L. A. W. Gloster, and T. A. King, “Laser mode selection in multiarm grazing-incidence cavities,” J. Opt. Soc. Am. B 15, 2395-2403 (1998).
    [CrossRef]
  7. D. K. Ko, G. Lim, S. H. Kim, B. H. Cha, and J. Lee, “Self-seeding in a dual-cavity-type Ti:sapphire laser oscillator,” Opt. Lett. 20, 710-712 (1995).
    [CrossRef] [PubMed]
  8. A. J. Merriam and G. Y. Yin, “Efficient self-seeding of a pulsed Ti3+:Al2O3 laser,” Opt. Lett. 23, 1034-1036 (1998).
    [CrossRef]
  9. T. D. Raymond, P. Esherick, and A. V. Smith, “Widely tunable single-longitudinal-mode pulsed dye laser,” Opt. Lett. 14, 1116-1118 (1989).
    [CrossRef] [PubMed]
  10. Y. H. Cha, J. M Han, and Y. J. Rhee, “Development and characterization of a 1-kHz self-seeding-type Ti:sapphire laser oscillator,” Jpn. J. Appl. Phys. 42, 3400-3402 (2003).
    [CrossRef]
  11. F. J. Duarte, J. J. Ehrlich, and S. P. Patterson, S. D. Russell, and J. E. Adams, “Linewidth instability in narrow-linewidth flashlamp-pumped dye laser oscillators,” Appl. Opt. 27, 843-846 (1988).
    [CrossRef] [PubMed]
  12. C. E. Hamilton, “Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision,” Opt. Lett. 17, 728-730 (1992).
    [CrossRef] [PubMed]
  13. A. E. Siegman, Lasers (University Science, 1986).

2007 (1)

2003 (1)

Y. H. Cha, J. M Han, and Y. J. Rhee, “Development and characterization of a 1-kHz self-seeding-type Ti:sapphire laser oscillator,” Jpn. J. Appl. Phys. 42, 3400-3402 (2003).
[CrossRef]

1999 (1)

1998 (2)

1995 (1)

1992 (1)

1990 (1)

P. T. Greenland, “Laser isotope separation,” Contemp. Phys. 31, 405-424 (1990).
[CrossRef]

1989 (1)

1988 (1)

1978 (2)

I. Shoshan and U. P. Oppeneim, “The use of a diffraction grating as a beam expander in a dye laser cavity,” Opt. Commun. 25, 375-378 (1978).
[CrossRef]

M. G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser,” Opt. Lett. 3, 138-140 (1978).
[CrossRef] [PubMed]

Adams, J. E.

Binks, D. J.

Cha, B. H.

Cha, Y. H.

Y. H. Cha, J. M Han, and Y. J. Rhee, “Development and characterization of a 1-kHz self-seeding-type Ti:sapphire laser oscillator,” Jpn. J. Appl. Phys. 42, 3400-3402 (2003).
[CrossRef]

Duarte, F. J.

Ehrlich, J. J.

Esherick, P.

Gloster, L. A. W.

Greenland, P. T.

P. T. Greenland, “Laser isotope separation,” Contemp. Phys. 31, 405-424 (1990).
[CrossRef]

Hamilton, C. E.

Han, J. M

Y. H. Cha, J. M Han, and Y. J. Rhee, “Development and characterization of a 1-kHz self-seeding-type Ti:sapphire laser oscillator,” Jpn. J. Appl. Phys. 42, 3400-3402 (2003).
[CrossRef]

Kangas, K. W.

Kim, S. H.

King, T. A.

Ko, D. K.

Lee, J.

Lim, G.

Littman, M. G.

Lowenthal, D. D.

Merriam, A. J.

Muller, C. H.

Oppeneim, U. P.

I. Shoshan and U. P. Oppeneim, “The use of a diffraction grating as a beam expander in a dye laser cavity,” Opt. Commun. 25, 375-378 (1978).
[CrossRef]

Patterson, S. P.

Raymond, T. D.

Rhee, Y. J.

Y. H. Cha, J. M Han, and Y. J. Rhee, “Development and characterization of a 1-kHz self-seeding-type Ti:sapphire laser oscillator,” Jpn. J. Appl. Phys. 42, 3400-3402 (2003).
[CrossRef]

Russell, S. D.

Shoshan, I.

I. Shoshan and U. P. Oppeneim, “The use of a diffraction grating as a beam expander in a dye laser cavity,” Opt. Commun. 25, 375-378 (1978).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Smith, A. V.

Tamura, K.

Yin, G. Y.

Appl. Opt. (2)

Contemp. Phys. (1)

P. T. Greenland, “Laser isotope separation,” Contemp. Phys. 31, 405-424 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. H. Cha, J. M Han, and Y. J. Rhee, “Development and characterization of a 1-kHz self-seeding-type Ti:sapphire laser oscillator,” Jpn. J. Appl. Phys. 42, 3400-3402 (2003).
[CrossRef]

Opt. Commun. (1)

I. Shoshan and U. P. Oppeneim, “The use of a diffraction grating as a beam expander in a dye laser cavity,” Opt. Commun. 25, 375-378 (1978).
[CrossRef]

Opt. Lett. (6)

Other (1)

A. E. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental setup showing the self-seeded double-grating Ti:sapphire laser oscillator. Ti:s, Ti:sapphire crystal; M1, back mirror; M2, feedback mirror; G1, G2, gratings 1 and 2.

Fig. 2
Fig. 2

Laser output energy as a function of the pump energy: curve (a), for the double-grating GIC geometry; curves (b) and (c), self-seeding geometry for cases 1 and 2; curve (d), nonselective output for case 2 .

Fig. 3
Fig. 3

Analysis of laser output using a 5 GHz free spectral range (FSR) etalon. The cross section of the fringe showing SLM operation was recorded with a linear CCD array.

Fig. 4
Fig. 4

Tuning curve of the self-seeded Ti:sapphire laser output obtained by the rotation of grating 2.

Fig. 5
Fig. 5

Examples of oscilloscope traces of the pump pulse profiles and the oscillator output pulse profiles obtained at the pump energies of [curve (a)] 5.2 mJ , [curve (b)] 5.9 mJ , and [curve (c)] 8.0 mJ as well as nonselective output pulse profiles at the pump energies of [curve (d)] 5.9 mJ , [curve (e)] 6.4 mJ , and [curve (f)] 7.6 mJ .

Fig. 6
Fig. 6

Pulse buildup time as a function of the pump energy for cases 1 and 2 [curves (a) and (b)] and for the nonselective channel [curve (c)] of case 2.

Fig. 7
Fig. 7

Laser pulse width as a function of the pump pulse energy for the cases 1 and 2 [curves (a) and (b)].

Fig. 8
Fig. 8

Cavity gain of the mode channel [curve (a)] and the nonselective channel [curve (b)] as a function of the inversion density in the gain medium, showing gain switching behavior.

Metrics