Abstract

We propose a method for measuring hyper-Rayleigh scattering employing pulse trains produced by a Q-switched and mode-locked Nd:YAG laser. The use of the entire pulse train under the Q-switch envelope avoids the need of any device to scan the irradiance, as is usually done with nanosecond and femtosecond single-pulse lasers. To verify the feasibility of the technique, we performed measurements in different solutions of para-nitroaniline and compared the results with those obtained with nanosecond pulses. In both cases, the agreement with the hyperpolarizability values reported in the literature is about the same, but the measurements carried out with pulse trains are at least 20 times faster. Besides the advantage of acquisition speed, the use of pulse trains also allows the instantaneous inspection of slow luminescence contributions arising from multiphoton absorption.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980-2983 (1991).
    [CrossRef] [PubMed]
  2. M. A. Pauley, H. W. Guan, C. H. Wang, and A. K. Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821-7829 (1996).
    [CrossRef]
  3. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190-2194 (1994).
    [CrossRef]
  4. K. Wostyn, K. Binnemans, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in the Fourier domain for higher precision: correcting for multiphoton fluorescence with demodulation and phase data,” Rev. Sci. Instrum. 72, 3215-3220 (2001).
    [CrossRef]
  5. O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities beta of fluorescent molecules,” Chem. Phys. Lett. 253, 145-150 (1996).
    [CrossRef]
  6. F. L. Huyskens, P. L. Huyskens, and A. P. Persoons, “Solvent dependence of the first hyperpolarizability of p-nitroanilines: differences between nonspecific dipole-dipole interactions and solute-solvent H-bonds,” J. Chem. Phys. 108, 8161-8171 (1998).
    [CrossRef]
  7. J. N. Woodford, M. A. Pauley, and C. H. Wang, “Solvent dependence of the first hyperpolarizability of p-nitroaniline revisited,” J. Phys. Chem. A 101, 1989-1992 (1997).
    [CrossRef]

2001 (1)

K. Wostyn, K. Binnemans, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in the Fourier domain for higher precision: correcting for multiphoton fluorescence with demodulation and phase data,” Rev. Sci. Instrum. 72, 3215-3220 (2001).
[CrossRef]

1998 (1)

F. L. Huyskens, P. L. Huyskens, and A. P. Persoons, “Solvent dependence of the first hyperpolarizability of p-nitroanilines: differences between nonspecific dipole-dipole interactions and solute-solvent H-bonds,” J. Chem. Phys. 108, 8161-8171 (1998).
[CrossRef]

1997 (1)

J. N. Woodford, M. A. Pauley, and C. H. Wang, “Solvent dependence of the first hyperpolarizability of p-nitroaniline revisited,” J. Phys. Chem. A 101, 1989-1992 (1997).
[CrossRef]

1996 (2)

O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities beta of fluorescent molecules,” Chem. Phys. Lett. 253, 145-150 (1996).
[CrossRef]

M. A. Pauley, H. W. Guan, C. H. Wang, and A. K. Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821-7829 (1996).
[CrossRef]

1994 (1)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190-2194 (1994).
[CrossRef]

1991 (1)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980-2983 (1991).
[CrossRef] [PubMed]

Binnemans, K.

K. Wostyn, K. Binnemans, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in the Fourier domain for higher precision: correcting for multiphoton fluorescence with demodulation and phase data,” Rev. Sci. Instrum. 72, 3215-3220 (2001).
[CrossRef]

Clays, K.

K. Wostyn, K. Binnemans, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in the Fourier domain for higher precision: correcting for multiphoton fluorescence with demodulation and phase data,” Rev. Sci. Instrum. 72, 3215-3220 (2001).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190-2194 (1994).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980-2983 (1991).
[CrossRef] [PubMed]

Guan, H. W.

M. A. Pauley, H. W. Guan, C. H. Wang, and A. K. Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821-7829 (1996).
[CrossRef]

Huyskens, F. L.

F. L. Huyskens, P. L. Huyskens, and A. P. Persoons, “Solvent dependence of the first hyperpolarizability of p-nitroanilines: differences between nonspecific dipole-dipole interactions and solute-solvent H-bonds,” J. Chem. Phys. 108, 8161-8171 (1998).
[CrossRef]

Huyskens, P. L.

F. L. Huyskens, P. L. Huyskens, and A. P. Persoons, “Solvent dependence of the first hyperpolarizability of p-nitroanilines: differences between nonspecific dipole-dipole interactions and solute-solvent H-bonds,” J. Chem. Phys. 108, 8161-8171 (1998).
[CrossRef]

Jen, A. K. Y.

M. A. Pauley, H. W. Guan, C. H. Wang, and A. K. Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821-7829 (1996).
[CrossRef]

Noordman, O. F. J.

O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities beta of fluorescent molecules,” Chem. Phys. Lett. 253, 145-150 (1996).
[CrossRef]

Pauley, M. A.

J. N. Woodford, M. A. Pauley, and C. H. Wang, “Solvent dependence of the first hyperpolarizability of p-nitroaniline revisited,” J. Phys. Chem. A 101, 1989-1992 (1997).
[CrossRef]

M. A. Pauley, H. W. Guan, C. H. Wang, and A. K. Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821-7829 (1996).
[CrossRef]

Persoons, A.

K. Wostyn, K. Binnemans, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in the Fourier domain for higher precision: correcting for multiphoton fluorescence with demodulation and phase data,” Rev. Sci. Instrum. 72, 3215-3220 (2001).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190-2194 (1994).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980-2983 (1991).
[CrossRef] [PubMed]

Persoons, A. P.

F. L. Huyskens, P. L. Huyskens, and A. P. Persoons, “Solvent dependence of the first hyperpolarizability of p-nitroanilines: differences between nonspecific dipole-dipole interactions and solute-solvent H-bonds,” J. Chem. Phys. 108, 8161-8171 (1998).
[CrossRef]

van Hulst, N. F.

O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities beta of fluorescent molecules,” Chem. Phys. Lett. 253, 145-150 (1996).
[CrossRef]

Wang, C. H.

J. N. Woodford, M. A. Pauley, and C. H. Wang, “Solvent dependence of the first hyperpolarizability of p-nitroaniline revisited,” J. Phys. Chem. A 101, 1989-1992 (1997).
[CrossRef]

M. A. Pauley, H. W. Guan, C. H. Wang, and A. K. Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821-7829 (1996).
[CrossRef]

Woodford, J. N.

J. N. Woodford, M. A. Pauley, and C. H. Wang, “Solvent dependence of the first hyperpolarizability of p-nitroaniline revisited,” J. Phys. Chem. A 101, 1989-1992 (1997).
[CrossRef]

Wostyn, K.

K. Wostyn, K. Binnemans, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in the Fourier domain for higher precision: correcting for multiphoton fluorescence with demodulation and phase data,” Rev. Sci. Instrum. 72, 3215-3220 (2001).
[CrossRef]

Chem. Phys. Lett. (1)

O. F. J. Noordman and N. F. van Hulst, “Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities beta of fluorescent molecules,” Chem. Phys. Lett. 253, 145-150 (1996).
[CrossRef]

J. Chem. Phys. (2)

F. L. Huyskens, P. L. Huyskens, and A. P. Persoons, “Solvent dependence of the first hyperpolarizability of p-nitroanilines: differences between nonspecific dipole-dipole interactions and solute-solvent H-bonds,” J. Chem. Phys. 108, 8161-8171 (1998).
[CrossRef]

M. A. Pauley, H. W. Guan, C. H. Wang, and A. K. Y. Jen, “Determination of first hyperpolarizability of nonlinear optical chromophores by second harmonic scattering using an external reference,” J. Chem. Phys. 104, 7821-7829 (1996).
[CrossRef]

J. Phys. Chem. A (1)

J. N. Woodford, M. A. Pauley, and C. H. Wang, “Solvent dependence of the first hyperpolarizability of p-nitroaniline revisited,” J. Phys. Chem. A 101, 1989-1992 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66, 2980-2983 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution with tunable femtosecond continuous-wave laser source,” Rev. Sci. Instrum. 65, 2190-2194 (1994).
[CrossRef]

K. Wostyn, K. Binnemans, K. Clays, and A. Persoons, “Hyper-Rayleigh scattering in the Fourier domain for higher precision: correcting for multiphoton fluorescence with demodulation and phase data,” Rev. Sci. Instrum. 72, 3215-3220 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for HRS with pulse trains.

Fig. 2
Fig. 2

(a) Reference pulse train and (b) comparison between the peak maxima collected for both the reference (filled circles) and the HRS (open circles) signals for a PNA/methanol sample. The strongest pulse in the train was arbitrarily labeled 0.

Fig. 3
Fig. 3

(a) HRS as a function of the fundamental beam irradiance and (b) HRS normalized to the square of the fundamental beam irradiance. The dashed line is just a visual aid.

Fig. 4
Fig. 4

(a) HRS for different concentrations of PNA in methanol normalized to the square of the fundamental beam irradiance and (b) quadratic coefficients as function of the concentration.

Fig. 5
Fig. 5

HRS for a solution of Rhodamine 6G diluted in methanol, showing the existence of long-lived processes.

Tables (2)

Tables Icon

Table 1 First Hyperpolarizabilities of PNA Measured with the Pulse Train Technique a

Tables Icon

Table 2 First Hyperpolarizabilities of PNA Measured with 10 ns Single Pulses a

Metrics