Abstract

We report a specially designed adaptive mirror that can be bent into a helical shape for generation of an optical phase singularity. The adaptive helical mirror (AHM) reported here is a reflective device that can provide a continuous phase variation of the optical field in the azimuthal direction. The construction details and evaluation of the AHM are presented. A Michelson interferometer is used for the detection of the phase singularity. The AHM can be used for generation of a singular beam having multiple topological charges, positive or negative, just by controlling the excitation voltage of the AHM.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165-190 (1974).
    [CrossRef]
  2. I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604-612 (1995).
    [CrossRef]
  3. I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422-428 (1993).
    [CrossRef]
  4. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in OpticsE.Wolf, ed. (Elsevier, 1995), Vol. 39, pp. 291-372.
    [CrossRef]
  5. K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21, 827-829 (1996).
    [CrossRef] [PubMed]
  6. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485-2491 (1996).
    [CrossRef]
  7. C. Tamm and C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” J. Opt. Soc. Am. B 71034-1038(1990).
    [CrossRef]
  8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature 412, 313-316 (2001).
    [CrossRef] [PubMed]
  9. G. Gibson, J. Courtial, and M. J. Padgett, “Free space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448-5456 (2004).
    [CrossRef] [PubMed]
  10. J. M. Vaughan and D. V. Willets, “Temporal and interference fringe analysis of TEM01* laser modes,” J. Opt. Soc. Am. 73, 1018-1021 (1983).
    [CrossRef]
  11. M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132(1993).
    [CrossRef]
  12. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer generated holograms,” Opt. Lett. 17, 221-223 (1992).
    [CrossRef] [PubMed]
  13. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321-327(1994).
    [CrossRef]
  14. X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17 (7/8), 36-41 (2006).
    [CrossRef]
  15. G. A. Swartzlander, Jr., “The optical vortex lens,” Opt. Photon. News 17 (11), 39-43 (2006).
    [CrossRef]
  16. Ya. Izdebskaya, V. Shvedov, and A. Volyar, “Generation of higher-order optical vortices by a dielectric wedge,” Opt. Lett. 30, 2472-2474 (2005).
    [CrossRef] [PubMed]
  17. X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209-213 (2007).
    [CrossRef]
  18. C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, and S. G. Lipson, “Adjustable spiral phase plate,” Appl. Opt. 43, 2397-2399 (2004).
    [CrossRef] [PubMed]
  19. M. D. Levenson, T. Ebihara, Y. Morikawa, G. Dai, N. Hayashi, and S. M. Tan, “Optical vortex mask via levels,” J. Microlithogr. Microfab. Microsyst. 3, 293-304 (2004).
    [CrossRef]
  20. D. Ganic, X. Gan, and M. Gu, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 271351-1353 (2002).
    [CrossRef]
  21. O. Boyko, Th. A. Planchon, P. Mercere, C. Valentin, and Ph. Balcou, “Adaptive shaping of a focused intense laser beam into a doughnut mode,” Opt. Commun. 246, 131-140 (2005).
    [CrossRef]
  22. G. Zhou and F. S. Chau, “Helical wave front laser beam generated with a micro-electro-mechanical systems (MEMS)-based device,” IEEE Photon. Technol. Lett. 18, 292-294(2006).
    [CrossRef]
  23. N. B. Baranova, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkunov, and B. Ya Zel'dovich, “Wavefront dislocations: topological limitations for adaptive systems with phase conjugation,” J. Opt. Soc. Am. 73, 525-528 (1983).
    [CrossRef]
  24. F. Roddier, Adaptive Optics in Astronomy (Cambridge U. Press, 1999).
    [CrossRef]
  25. R. K. Tyson, Adaptive Optics Engineering Handbook (Marcel Dekker., 2000).
  26. R. Q. Fugate, “Laser beacon adaptive optics for power beaming applications,” Proc. SPIE. 2121, 68-76 (1994).
    [CrossRef]
  27. A. Reorda, “Adaptive optics opthalmoscopy,” J. Refract. Surg. 16, 602-607 (2000).
  28. B. Hulburd and D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186-1190 (1990).
    [CrossRef]
  29. J. H. Everson, R. E. Aldrich, and V. P. Albertinetti, “Discrete actuator deformable mirror,” Opt. Eng. 20, 316-319 (1981).
  30. M. A. Ealey and J. F. Washeba, “Continuous face sheet low voltage deformable mirrors,” Opt. Eng. 29, 1191-1198 (1990).
    [CrossRef]
  31. S. G. Lipson and E. Steinhaus, “Bimorph piezo-electric flexible mirror,” J. Opt. Soc. Am. 69, 478-481 (1979).
    [CrossRef]
  32. G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34, 2968-2972 (1995).
    [CrossRef] [PubMed]
  33. T. Bifano, P. Bierdon, H. Zhu, S. Cornelissen, and J. H. Kim, “Mega pixel wave front correctors,” Proc. SPIE 5490, 1472-1481 (2004).
    [CrossRef]
  34. J. M. Herbert, Ferroelectric Transducers and Sensors (Gordon & Breach, 1982).
  35. S. Takahashi, “Multilayer piezo-electric ceramic actuators and their applications,” Jpn. J. Appl. Phy. Suppl. 24, 24-2, 41-45(1995).
  36. R. E. Aldrich, “Requirement of piezo-electric materials for deformable mirrors,” Ferroelectrics 27, 19-25 (1980).
    [CrossRef]
  37. B. Jaffe, W. R. Cook, and H. Jaffe, Piezo-electric Ceramics (Academic, 1971).
  38. A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (Chapman & Hall, 1990).

2007

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209-213 (2007).
[CrossRef]

2006

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17 (7/8), 36-41 (2006).
[CrossRef]

G. A. Swartzlander, Jr., “The optical vortex lens,” Opt. Photon. News 17 (11), 39-43 (2006).
[CrossRef]

G. Zhou and F. S. Chau, “Helical wave front laser beam generated with a micro-electro-mechanical systems (MEMS)-based device,” IEEE Photon. Technol. Lett. 18, 292-294(2006).
[CrossRef]

2005

O. Boyko, Th. A. Planchon, P. Mercere, C. Valentin, and Ph. Balcou, “Adaptive shaping of a focused intense laser beam into a doughnut mode,” Opt. Commun. 246, 131-140 (2005).
[CrossRef]

Ya. Izdebskaya, V. Shvedov, and A. Volyar, “Generation of higher-order optical vortices by a dielectric wedge,” Opt. Lett. 30, 2472-2474 (2005).
[CrossRef] [PubMed]

2004

C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, and S. G. Lipson, “Adjustable spiral phase plate,” Appl. Opt. 43, 2397-2399 (2004).
[CrossRef] [PubMed]

M. D. Levenson, T. Ebihara, Y. Morikawa, G. Dai, N. Hayashi, and S. M. Tan, “Optical vortex mask via levels,” J. Microlithogr. Microfab. Microsyst. 3, 293-304 (2004).
[CrossRef]

G. Gibson, J. Courtial, and M. J. Padgett, “Free space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448-5456 (2004).
[CrossRef] [PubMed]

T. Bifano, P. Bierdon, H. Zhu, S. Cornelissen, and J. H. Kim, “Mega pixel wave front correctors,” Proc. SPIE 5490, 1472-1481 (2004).
[CrossRef]

2002

2001

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature 412, 313-316 (2001).
[CrossRef] [PubMed]

2000

A. Reorda, “Adaptive optics opthalmoscopy,” J. Refract. Surg. 16, 602-607 (2000).

1996

K. T. Gahagan and G. A. Swartzlander, Jr., “Optical vortex trapping of particles,” Opt. Lett. 21, 827-829 (1996).
[CrossRef] [PubMed]

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

1995

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604-612 (1995).
[CrossRef]

S. Takahashi, “Multilayer piezo-electric ceramic actuators and their applications,” Jpn. J. Appl. Phy. Suppl. 24, 24-2, 41-45(1995).

G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34, 2968-2972 (1995).
[CrossRef] [PubMed]

1994

R. Q. Fugate, “Laser beacon adaptive optics for power beaming applications,” Proc. SPIE. 2121, 68-76 (1994).
[CrossRef]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321-327(1994).
[CrossRef]

1993

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422-428 (1993).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132(1993).
[CrossRef]

1992

1990

C. Tamm and C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” J. Opt. Soc. Am. B 71034-1038(1990).
[CrossRef]

B. Hulburd and D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186-1190 (1990).
[CrossRef]

M. A. Ealey and J. F. Washeba, “Continuous face sheet low voltage deformable mirrors,” Opt. Eng. 29, 1191-1198 (1990).
[CrossRef]

1983

1981

J. H. Everson, R. E. Aldrich, and V. P. Albertinetti, “Discrete actuator deformable mirror,” Opt. Eng. 20, 316-319 (1981).

1980

R. E. Aldrich, “Requirement of piezo-electric materials for deformable mirrors,” Ferroelectrics 27, 19-25 (1980).
[CrossRef]

1979

1974

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165-190 (1974).
[CrossRef]

Ahluwalia, B. S.

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17 (7/8), 36-41 (2006).
[CrossRef]

Albertinetti, V. P.

J. H. Everson, R. E. Aldrich, and V. P. Albertinetti, “Discrete actuator deformable mirror,” Opt. Eng. 20, 316-319 (1981).

Aldrich, R. E.

J. H. Everson, R. E. Aldrich, and V. P. Albertinetti, “Discrete actuator deformable mirror,” Opt. Eng. 20, 316-319 (1981).

R. E. Aldrich, “Requirement of piezo-electric materials for deformable mirrors,” Ferroelectrics 27, 19-25 (1980).
[CrossRef]

Allen, L.

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132(1993).
[CrossRef]

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in OpticsE.Wolf, ed. (Elsevier, 1995), Vol. 39, pp. 291-372.
[CrossRef]

Babiker, M.

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in OpticsE.Wolf, ed. (Elsevier, 1995), Vol. 39, pp. 291-372.
[CrossRef]

Balcou, Ph.

O. Boyko, Th. A. Planchon, P. Mercere, C. Valentin, and Ph. Balcou, “Adaptive shaping of a focused intense laser beam into a doughnut mode,” Opt. Commun. 246, 131-140 (2005).
[CrossRef]

Baranova, N. B.

Basistiy, I. V.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604-612 (1995).
[CrossRef]

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422-428 (1993).
[CrossRef]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321-327(1994).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132(1993).
[CrossRef]

Berry, M. V.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165-190 (1974).
[CrossRef]

Bierdon, P.

T. Bifano, P. Bierdon, H. Zhu, S. Cornelissen, and J. H. Kim, “Mega pixel wave front correctors,” Proc. SPIE 5490, 1472-1481 (2004).
[CrossRef]

Bifano, T.

T. Bifano, P. Bierdon, H. Zhu, S. Cornelissen, and J. H. Kim, “Mega pixel wave front correctors,” Proc. SPIE 5490, 1472-1481 (2004).
[CrossRef]

Boyko, O.

O. Boyko, Th. A. Planchon, P. Mercere, C. Valentin, and Ph. Balcou, “Adaptive shaping of a focused intense laser beam into a doughnut mode,” Opt. Commun. 246, 131-140 (2005).
[CrossRef]

Bu, J.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209-213 (2007).
[CrossRef]

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17 (7/8), 36-41 (2006).
[CrossRef]

Burge, R. E.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209-213 (2007).
[CrossRef]

Chau, F. S.

G. Zhou and F. S. Chau, “Helical wave front laser beam generated with a micro-electro-mechanical systems (MEMS)-based device,” IEEE Photon. Technol. Lett. 18, 292-294(2006).
[CrossRef]

Cheong, W. C.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209-213 (2007).
[CrossRef]

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17 (7/8), 36-41 (2006).
[CrossRef]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321-327(1994).
[CrossRef]

Cook, W. R.

B. Jaffe, W. R. Cook, and H. Jaffe, Piezo-electric Ceramics (Academic, 1971).

Cornelissen, S.

T. Bifano, P. Bierdon, H. Zhu, S. Cornelissen, and J. H. Kim, “Mega pixel wave front correctors,” Proc. SPIE 5490, 1472-1481 (2004).
[CrossRef]

Courtial, J.

Dai, G.

M. D. Levenson, T. Ebihara, Y. Morikawa, G. Dai, N. Hayashi, and S. M. Tan, “Optical vortex mask via levels,” J. Microlithogr. Microfab. Microsyst. 3, 293-304 (2004).
[CrossRef]

Ealey, M. A.

M. A. Ealey and J. F. Washeba, “Continuous face sheet low voltage deformable mirrors,” Opt. Eng. 29, 1191-1198 (1990).
[CrossRef]

Ebihara, T.

M. D. Levenson, T. Ebihara, Y. Morikawa, G. Dai, N. Hayashi, and S. M. Tan, “Optical vortex mask via levels,” J. Microlithogr. Microfab. Microsyst. 3, 293-304 (2004).
[CrossRef]

Everson, J. H.

J. H. Everson, R. E. Aldrich, and V. P. Albertinetti, “Discrete actuator deformable mirror,” Opt. Eng. 20, 316-319 (1981).

Fugate, R. Q.

R. Q. Fugate, “Laser beacon adaptive optics for power beaming applications,” Proc. SPIE. 2121, 68-76 (1994).
[CrossRef]

Gahagan, K. T.

Gan, X.

Ganic, D.

Gibson, G.

Gu, M.

Hayashi, N.

M. D. Levenson, T. Ebihara, Y. Morikawa, G. Dai, N. Hayashi, and S. M. Tan, “Optical vortex mask via levels,” J. Microlithogr. Microfab. Microsyst. 3, 293-304 (2004).
[CrossRef]

Heckenberg, N. R.

Herbert, J. M.

A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (Chapman & Hall, 1990).

J. M. Herbert, Ferroelectric Transducers and Sensors (Gordon & Breach, 1982).

Hershcovitz, O.

Hulburd, B.

B. Hulburd and D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186-1190 (1990).
[CrossRef]

Izdebskaya, Ya.

Jaffe, B.

B. Jaffe, W. R. Cook, and H. Jaffe, Piezo-electric Ceramics (Academic, 1971).

Jaffe, H.

B. Jaffe, W. R. Cook, and H. Jaffe, Piezo-electric Ceramics (Academic, 1971).

Kim, J. H.

T. Bifano, P. Bierdon, H. Zhu, S. Cornelissen, and J. H. Kim, “Mega pixel wave front correctors,” Proc. SPIE 5490, 1472-1481 (2004).
[CrossRef]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321-327(1994).
[CrossRef]

Levenson, M. D.

M. D. Levenson, T. Ebihara, Y. Morikawa, G. Dai, N. Hayashi, and S. M. Tan, “Optical vortex mask via levels,” J. Microlithogr. Microfab. Microsyst. 3, 293-304 (2004).
[CrossRef]

Lin, J.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209-213 (2007).
[CrossRef]

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17 (7/8), 36-41 (2006).
[CrossRef]

Lipson, S. G.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature 412, 313-316 (2001).
[CrossRef] [PubMed]

Mamaev, A. V.

McDuff, R.

Mercere, P.

O. Boyko, Th. A. Planchon, P. Mercere, C. Valentin, and Ph. Balcou, “Adaptive shaping of a focused intense laser beam into a doughnut mode,” Opt. Commun. 246, 131-140 (2005).
[CrossRef]

Moed, S.

Moh, K. J.

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17 (7/8), 36-41 (2006).
[CrossRef]

Morikawa, Y.

M. D. Levenson, T. Ebihara, Y. Morikawa, G. Dai, N. Hayashi, and S. M. Tan, “Optical vortex mask via levels,” J. Microlithogr. Microfab. Microsyst. 3, 293-304 (2004).
[CrossRef]

Moulson, A. J.

A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (Chapman & Hall, 1990).

Nye, J. F

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165-190 (1974).
[CrossRef]

Padgett, M. J.

G. Gibson, J. Courtial, and M. J. Padgett, “Free space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448-5456 (2004).
[CrossRef] [PubMed]

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in OpticsE.Wolf, ed. (Elsevier, 1995), Vol. 39, pp. 291-372.
[CrossRef]

Pilipetsky, N. F.

Planchon, Th. A.

O. Boyko, Th. A. Planchon, P. Mercere, C. Valentin, and Ph. Balcou, “Adaptive shaping of a focused intense laser beam into a doughnut mode,” Opt. Commun. 246, 131-140 (2005).
[CrossRef]

Reorda, A.

A. Reorda, “Adaptive optics opthalmoscopy,” J. Refract. Surg. 16, 602-607 (2000).

Roddier, F.

F. Roddier, Adaptive Optics in Astronomy (Cambridge U. Press, 1999).
[CrossRef]

Rotschild, C.

S. Ahluwalia, B. P.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209-213 (2007).
[CrossRef]

Sandler, D.

B. Hulburd and D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186-1190 (1990).
[CrossRef]

Sarro, P. M.

Shkunov, V. V.

Shvedov, V.

Simpson, N. B.

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

Smith, C. P.

Soskin, M. S.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604-612 (1995).
[CrossRef]

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422-428 (1993).
[CrossRef]

Steinhaus, E.

Swartzlander, G. A.

Takahashi, S.

S. Takahashi, “Multilayer piezo-electric ceramic actuators and their applications,” Jpn. J. Appl. Phy. Suppl. 24, 24-2, 41-45(1995).

Tamm, C.

Tan, S. M.

M. D. Levenson, T. Ebihara, Y. Morikawa, G. Dai, N. Hayashi, and S. M. Tan, “Optical vortex mask via levels,” J. Microlithogr. Microfab. Microsyst. 3, 293-304 (2004).
[CrossRef]

Tao, S.

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17 (7/8), 36-41 (2006).
[CrossRef]

Tao, S. H.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209-213 (2007).
[CrossRef]

Tyson, R. K.

R. K. Tyson, Adaptive Optics Engineering Handbook (Marcel Dekker., 2000).

Valentin, C.

O. Boyko, Th. A. Planchon, P. Mercere, C. Valentin, and Ph. Balcou, “Adaptive shaping of a focused intense laser beam into a doughnut mode,” Opt. Commun. 246, 131-140 (2005).
[CrossRef]

van der Veen, H.

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132(1993).
[CrossRef]

Vasnetsov, M. V.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604-612 (1995).
[CrossRef]

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422-428 (1993).
[CrossRef]

Vaughan, J. M.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature 412, 313-316 (2001).
[CrossRef] [PubMed]

Vdovin, G.

Volyar, A.

Washeba, J. F.

M. A. Ealey and J. F. Washeba, “Continuous face sheet low voltage deformable mirrors,” Opt. Eng. 29, 1191-1198 (1990).
[CrossRef]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature 412, 313-316 (2001).
[CrossRef] [PubMed]

Weiss, C. O.

White, A. G.

Willets, D. V.

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321-327(1994).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132(1993).
[CrossRef]

Yu. Bazhenov, V.

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422-428 (1993).
[CrossRef]

Yuan, X.

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17 (7/8), 36-41 (2006).
[CrossRef]

Yuan, X. C.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209-213 (2007).
[CrossRef]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature 412, 313-316 (2001).
[CrossRef] [PubMed]

Zel'dovich, B. Ya

Zhang, L.

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17 (7/8), 36-41 (2006).
[CrossRef]

Zhang, L. S.

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209-213 (2007).
[CrossRef]

Zhou, G.

G. Zhou and F. S. Chau, “Helical wave front laser beam generated with a micro-electro-mechanical systems (MEMS)-based device,” IEEE Photon. Technol. Lett. 18, 292-294(2006).
[CrossRef]

Zhu, H.

T. Bifano, P. Bierdon, H. Zhu, S. Cornelissen, and J. H. Kim, “Mega pixel wave front correctors,” Proc. SPIE 5490, 1472-1481 (2004).
[CrossRef]

Zommer, S.

Appl. Opt.

Appl. Phys. B

X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209-213 (2007).
[CrossRef]

Ferroelectrics

R. E. Aldrich, “Requirement of piezo-electric materials for deformable mirrors,” Ferroelectrics 27, 19-25 (1980).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Zhou and F. S. Chau, “Helical wave front laser beam generated with a micro-electro-mechanical systems (MEMS)-based device,” IEEE Photon. Technol. Lett. 18, 292-294(2006).
[CrossRef]

J. Microlithogr. Microfab. Microsyst.

M. D. Levenson, T. Ebihara, Y. Morikawa, G. Dai, N. Hayashi, and S. M. Tan, “Optical vortex mask via levels,” J. Microlithogr. Microfab. Microsyst. 3, 293-304 (2004).
[CrossRef]

J. Mod. Opt.

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485-2491 (1996).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Refract. Surg.

A. Reorda, “Adaptive optics opthalmoscopy,” J. Refract. Surg. 16, 602-607 (2000).

Jpn. J. Appl. Phy. Suppl.

S. Takahashi, “Multilayer piezo-electric ceramic actuators and their applications,” Jpn. J. Appl. Phy. Suppl. 24, 24-2, 41-45(1995).

Nature

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photon,” Nature 412, 313-316 (2001).
[CrossRef] [PubMed]

Opt. Commun.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604-612 (1995).
[CrossRef]

I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422-428 (1993).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132(1993).
[CrossRef]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321-327(1994).
[CrossRef]

O. Boyko, Th. A. Planchon, P. Mercere, C. Valentin, and Ph. Balcou, “Adaptive shaping of a focused intense laser beam into a doughnut mode,” Opt. Commun. 246, 131-140 (2005).
[CrossRef]

Opt. Eng.

B. Hulburd and D. Sandler, “Segmented mirrors for atmospheric compensation,” Opt. Eng. 29, 1186-1190 (1990).
[CrossRef]

J. H. Everson, R. E. Aldrich, and V. P. Albertinetti, “Discrete actuator deformable mirror,” Opt. Eng. 20, 316-319 (1981).

M. A. Ealey and J. F. Washeba, “Continuous face sheet low voltage deformable mirrors,” Opt. Eng. 29, 1191-1198 (1990).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photon. News

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17 (7/8), 36-41 (2006).
[CrossRef]

G. A. Swartzlander, Jr., “The optical vortex lens,” Opt. Photon. News 17 (11), 39-43 (2006).
[CrossRef]

Proc. R. Soc. London Ser. A

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London Ser. A 336, 165-190 (1974).
[CrossRef]

Proc. SPIE

T. Bifano, P. Bierdon, H. Zhu, S. Cornelissen, and J. H. Kim, “Mega pixel wave front correctors,” Proc. SPIE 5490, 1472-1481 (2004).
[CrossRef]

Proc. SPIE.

R. Q. Fugate, “Laser beacon adaptive optics for power beaming applications,” Proc. SPIE. 2121, 68-76 (1994).
[CrossRef]

Other

J. M. Herbert, Ferroelectric Transducers and Sensors (Gordon & Breach, 1982).

B. Jaffe, W. R. Cook, and H. Jaffe, Piezo-electric Ceramics (Academic, 1971).

A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (Chapman & Hall, 1990).

F. Roddier, Adaptive Optics in Astronomy (Cambridge U. Press, 1999).
[CrossRef]

R. K. Tyson, Adaptive Optics Engineering Handbook (Marcel Dekker., 2000).

L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in OpticsE.Wolf, ed. (Elsevier, 1995), Vol. 39, pp. 291-372.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

CAD design of the AHM substrate with a radial cut.

Fig. 2
Fig. 2

CAD design of the PZT tube with a one sided cut along its length.

Fig. 3
Fig. 3

(a) Helically cut PZT and glass tubes. (b) Tubular actuator with PZT and glass tubes bonded together. (c) PZT tubular actuator with spiral-shaped electrode on its outer surface.

Fig. 4
Fig. 4

CAD design of the AHM.

Fig. 5
Fig. 5

Photographs of a mounted AHM.

Fig. 6
Fig. 6

(a) Vortex phase distribution. (b) Simulation of interference of vortex beam and a tilted plane reference wave. (c) Fork fringes in a speckle field—simulation.

Fig. 7
Fig. 7

Experimental setup of the Michelson interferometer for evaluation of the tubular actuator and the AHM.

Fig. 8
Fig. 8

Graph of adaptive mirror displacement versus excitation voltage.

Fig. 9
Fig. 9

Experimentally obtained (a) fork fringes that are due to interference of the vortex beam and a plane wave and (b) spiral fringes that are due to interference of the vortex beam and a spherical reference wave. (c) Fringe centers of the interference pattern in (a). A new fringe at the center confirms phase singularity.

Fig. 10
Fig. 10

Surface profile of the mirror that corresponding to that in Fig. 9a with the tilt removed.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U ( r , ϕ , z ) = U exp [ i k Δ z ( r , ϕ ) ] ,
Δ l = V d 31 l / t ,

Metrics