Abstract

We report on the realization and characterization of an active control system of the optical holographic setup used for fabrication of holographic gratings in liquid-crystalline composite materials. The system exploits a reference diffraction grating and a piezomirror in closed-loop feedback. The piezoelectric mirror exhibits a hysteresis that depends not only on the applied voltage, but also on the history of the mirror motion. In an open-loop configuration, the hysteresis can be reduced by adjusting the delay time between the application of two different control voltage values; in a closed-loop operation, it is possible to eliminate the residual hysteresis. By testing the system in different conditions, it has been shown that residual fluctuations are comparable to the resolution of the piezomirror operation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “Holography, 1948-1971,” Science 177, 299-313 (1972)..
    [CrossRef] [PubMed]
  2. P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications I: Basic Effects, Springer Series in Optical Sciences (Springer-Verlag, 1988).
  3. E. A. Curtis, C. W. Oates, and L. Hollberg, “Precision metrology and interferometry with ultracold calcium atoms,” in Quantum Electronics and Laser Science, 2003, QELS. Postconference Digest, doi:10.1109/QELS.2003.1276366 (2003).
  4. V. R. Ravindran, A. V. S. S. S. R. Sarma, and V. U. Nayar, “Holographic nondestructive testing of low modulus materials,” Mater. Eval. 50, 1058-1065 (1992).
  5. J. P. Waters, “Object motion compensation in CW holography,” in Holographic Nondestructive Testing, R. K. Erf, ed. (Academic, 1974), pp. 229-246.
  6. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
    [CrossRef]
  7. A. D'Alessandro, D. Donisi, R. Asquini, R. Becherelli, L. De Sio, R. Caputo, and C. Umeton, “Filtro elettroottico accordabile e processo di fabbricazione,” Italian Patent request CS2006A000019 (18 December 2006).
  8. J. Zou, F. Zhao, and R. T. Chen, “Two-step K+−Na+ and Ag+−Na+ ion-exchanged glass waveguides for C- band applications,” Appl. Opt. 41, 7620-7626 (2002).
    [CrossRef]
  9. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Development of a new kind of holographic grating made of liquid crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261-1263.(2004).
    [CrossRef] [PubMed]
  10. R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Formation of a grating of submicron nematic layers by photopolymerization of nematic-containing mixtures,” J. Exp. Theor. Phys. 91, 1190 -1197 (2000).
    [CrossRef]
  11. A. d'Alessandro, R. Asquini, C. Gizzi, R. Caputo, C. Umeton, A. Veltri, and A. V. Sukhov, “Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices,” Opt. Lett. 29, 1405 -1407 (2004).
    [CrossRef] [PubMed]
  12. R. Caputo, L. De Sio, M. J. J. Jak, E. J. Hornix, D. K. G. de Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15, 10540 -10552 (2007).
    [CrossRef] [PubMed]
  13. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Model for two beam coupling during the formation of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Phys. Lett. 87, 141108-141110 (2005).
    [CrossRef]
  14. A. Veltri, R. Caputo, L. De Sio, C. Umeton, and A. V. Sukhov, “Two-wave coupling during the formation of POLICRYPS diffraction gratings: experimental results theoretical model,” Mol. Cryst. Liq. Cryst. 454, 273-284 (2006).
    [CrossRef]
  15. R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Observation of two-wave coupling during the formation of POLICRYPS diffraction gratings,” Opt. Lett. 30, 1840-1842(2005).
    [CrossRef] [PubMed]
  16. Fringe Locker Inovar Devices, http://www.inovar-inc.com/index.html.
  17. Fringe Locker Excalibur Engineering, http://www.excaliburengineering.com.
  18. D. B. Neumann and H. W. Rose, “Improvement of recorded holographic fringes by feedback control,” Appl. Opt. 6, 1097-1104 (1967).
    [CrossRef] [PubMed]
  19. S. E. Moran, R. L. Law, P. N. Craig, and W. M. Goldberg, “Optically phase-locked electronic speckle pattern interferometer,” Appl. Opt. 26, 475 -491 (1987).
    [CrossRef] [PubMed]
  20. L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721-3727(2006).
    [CrossRef] [PubMed]
  21. L. De Sio, A. Veltri, R. Caputo, A. De Luca, A. V. Sukhov, and C. Umeton, “Sistema di controllo locale e stabilizzazione di un congegno per la scrittura dei reticoli olografici,” Italian Patent CZ2006A00005 (26 February 2006).
  22. J. Frejlich, L. Cescato, and G. F. Mendes, “Analysis of an active stabilization system for a holographic setup,” Appl. Opt. 27, 1967-1976 (1988).
    [CrossRef] [PubMed]
  23. I. D.Mayergoyz, G. Friedman, and C. Salling, “Comparison of the classical and generalized Preisach hysteresis models with experiments,” IEEE Trans. Magn. 25, 3925-3927 (1989).
    [CrossRef]
  24. P. Ge and M. Jouaneh, “Generalized Preisach model for hysteresis nonlinearlity of piezoceramic actuators,” Precis. Eng. 20, 99-111 (1997).
    [CrossRef]
  25. M. Goldfarb and N. Celanovic, “Behavioral implications of piezoelectric stack actuators for control of micromanipulation,” in Proceedings of IEEE International Conference on Robotics and Automation 1, 226-231 (1996).
  26. S.-B. Jung and S.-W. Kim, “Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control,” Precis. Eng. 16, 49-55 (1994).
    [CrossRef]
  27. S. Chonan, Z. Jiang, and T. Yamamoto, “Nonlinear hysteresis compensation of piezoelectric ceramic actuators,” J. Intell. Mater. Syst. Struct. 7, 150-156 (1996).
    [CrossRef]

2007 (1)

2006 (2)

A. Veltri, R. Caputo, L. De Sio, C. Umeton, and A. V. Sukhov, “Two-wave coupling during the formation of POLICRYPS diffraction gratings: experimental results theoretical model,” Mol. Cryst. Liq. Cryst. 454, 273-284 (2006).
[CrossRef]

L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721-3727(2006).
[CrossRef] [PubMed]

2005 (2)

R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Observation of two-wave coupling during the formation of POLICRYPS diffraction gratings,” Opt. Lett. 30, 1840-1842(2005).
[CrossRef] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Model for two beam coupling during the formation of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Phys. Lett. 87, 141108-141110 (2005).
[CrossRef]

2004 (2)

2002 (1)

2000 (1)

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Formation of a grating of submicron nematic layers by photopolymerization of nematic-containing mixtures,” J. Exp. Theor. Phys. 91, 1190 -1197 (2000).
[CrossRef]

1997 (1)

P. Ge and M. Jouaneh, “Generalized Preisach model for hysteresis nonlinearlity of piezoceramic actuators,” Precis. Eng. 20, 99-111 (1997).
[CrossRef]

1996 (2)

M. Goldfarb and N. Celanovic, “Behavioral implications of piezoelectric stack actuators for control of micromanipulation,” in Proceedings of IEEE International Conference on Robotics and Automation 1, 226-231 (1996).

S. Chonan, Z. Jiang, and T. Yamamoto, “Nonlinear hysteresis compensation of piezoelectric ceramic actuators,” J. Intell. Mater. Syst. Struct. 7, 150-156 (1996).
[CrossRef]

1994 (2)

S.-B. Jung and S.-W. Kim, “Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control,” Precis. Eng. 16, 49-55 (1994).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

1992 (1)

V. R. Ravindran, A. V. S. S. S. R. Sarma, and V. U. Nayar, “Holographic nondestructive testing of low modulus materials,” Mater. Eval. 50, 1058-1065 (1992).

1989 (1)

I. D.Mayergoyz, G. Friedman, and C. Salling, “Comparison of the classical and generalized Preisach hysteresis models with experiments,” IEEE Trans. Magn. 25, 3925-3927 (1989).
[CrossRef]

1988 (1)

1987 (1)

1972 (1)

D. Gabor, “Holography, 1948-1971,” Science 177, 299-313 (1972)..
[CrossRef] [PubMed]

1967 (1)

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Asquini, R.

A. d'Alessandro, R. Asquini, C. Gizzi, R. Caputo, C. Umeton, A. Veltri, and A. V. Sukhov, “Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices,” Opt. Lett. 29, 1405 -1407 (2004).
[CrossRef] [PubMed]

A. D'Alessandro, D. Donisi, R. Asquini, R. Becherelli, L. De Sio, R. Caputo, and C. Umeton, “Filtro elettroottico accordabile e processo di fabbricazione,” Italian Patent request CS2006A000019 (18 December 2006).

Becherelli, R.

A. D'Alessandro, D. Donisi, R. Asquini, R. Becherelli, L. De Sio, R. Caputo, and C. Umeton, “Filtro elettroottico accordabile e processo di fabbricazione,” Italian Patent request CS2006A000019 (18 December 2006).

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Caputo, R.

R. Caputo, L. De Sio, M. J. J. Jak, E. J. Hornix, D. K. G. de Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15, 10540 -10552 (2007).
[CrossRef] [PubMed]

L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721-3727(2006).
[CrossRef] [PubMed]

A. Veltri, R. Caputo, L. De Sio, C. Umeton, and A. V. Sukhov, “Two-wave coupling during the formation of POLICRYPS diffraction gratings: experimental results theoretical model,” Mol. Cryst. Liq. Cryst. 454, 273-284 (2006).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Model for two beam coupling during the formation of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Phys. Lett. 87, 141108-141110 (2005).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Observation of two-wave coupling during the formation of POLICRYPS diffraction gratings,” Opt. Lett. 30, 1840-1842(2005).
[CrossRef] [PubMed]

A. d'Alessandro, R. Asquini, C. Gizzi, R. Caputo, C. Umeton, A. Veltri, and A. V. Sukhov, “Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices,” Opt. Lett. 29, 1405 -1407 (2004).
[CrossRef] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Development of a new kind of holographic grating made of liquid crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261-1263.(2004).
[CrossRef] [PubMed]

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Formation of a grating of submicron nematic layers by photopolymerization of nematic-containing mixtures,” J. Exp. Theor. Phys. 91, 1190 -1197 (2000).
[CrossRef]

A. D'Alessandro, D. Donisi, R. Asquini, R. Becherelli, L. De Sio, R. Caputo, and C. Umeton, “Filtro elettroottico accordabile e processo di fabbricazione,” Italian Patent request CS2006A000019 (18 December 2006).

L. De Sio, A. Veltri, R. Caputo, A. De Luca, A. V. Sukhov, and C. Umeton, “Sistema di controllo locale e stabilizzazione di un congegno per la scrittura dei reticoli olografici,” Italian Patent CZ2006A00005 (26 February 2006).

Celanovic, N.

M. Goldfarb and N. Celanovic, “Behavioral implications of piezoelectric stack actuators for control of micromanipulation,” in Proceedings of IEEE International Conference on Robotics and Automation 1, 226-231 (1996).

Cescato, L.

Chen, R. T.

Chonan, S.

S. Chonan, Z. Jiang, and T. Yamamoto, “Nonlinear hysteresis compensation of piezoelectric ceramic actuators,” J. Intell. Mater. Syst. Struct. 7, 150-156 (1996).
[CrossRef]

Cornelissen, H. J.

Craig, P. N.

Curtis, E. A.

E. A. Curtis, C. W. Oates, and L. Hollberg, “Precision metrology and interferometry with ultracold calcium atoms,” in Quantum Electronics and Laser Science, 2003, QELS. Postconference Digest, doi:10.1109/QELS.2003.1276366 (2003).

d'Alessandro, A.

A. d'Alessandro, R. Asquini, C. Gizzi, R. Caputo, C. Umeton, A. Veltri, and A. V. Sukhov, “Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices,” Opt. Lett. 29, 1405 -1407 (2004).
[CrossRef] [PubMed]

A. D'Alessandro, D. Donisi, R. Asquini, R. Becherelli, L. De Sio, R. Caputo, and C. Umeton, “Filtro elettroottico accordabile e processo di fabbricazione,” Italian Patent request CS2006A000019 (18 December 2006).

de Boer, D. K. G.

De Luca, A.

L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721-3727(2006).
[CrossRef] [PubMed]

L. De Sio, A. Veltri, R. Caputo, A. De Luca, A. V. Sukhov, and C. Umeton, “Sistema di controllo locale e stabilizzazione di un congegno per la scrittura dei reticoli olografici,” Italian Patent CZ2006A00005 (26 February 2006).

De Sio, L.

R. Caputo, L. De Sio, M. J. J. Jak, E. J. Hornix, D. K. G. de Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15, 10540 -10552 (2007).
[CrossRef] [PubMed]

L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721-3727(2006).
[CrossRef] [PubMed]

A. Veltri, R. Caputo, L. De Sio, C. Umeton, and A. V. Sukhov, “Two-wave coupling during the formation of POLICRYPS diffraction gratings: experimental results theoretical model,” Mol. Cryst. Liq. Cryst. 454, 273-284 (2006).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Model for two beam coupling during the formation of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Phys. Lett. 87, 141108-141110 (2005).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Observation of two-wave coupling during the formation of POLICRYPS diffraction gratings,” Opt. Lett. 30, 1840-1842(2005).
[CrossRef] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Development of a new kind of holographic grating made of liquid crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261-1263.(2004).
[CrossRef] [PubMed]

L. De Sio, A. Veltri, R. Caputo, A. De Luca, A. V. Sukhov, and C. Umeton, “Sistema di controllo locale e stabilizzazione di un congegno per la scrittura dei reticoli olografici,” Italian Patent CZ2006A00005 (26 February 2006).

A. D'Alessandro, D. Donisi, R. Asquini, R. Becherelli, L. De Sio, R. Caputo, and C. Umeton, “Filtro elettroottico accordabile e processo di fabbricazione,” Italian Patent request CS2006A000019 (18 December 2006).

Donisi, D.

A. D'Alessandro, D. Donisi, R. Asquini, R. Becherelli, L. De Sio, R. Caputo, and C. Umeton, “Filtro elettroottico accordabile e processo di fabbricazione,” Italian Patent request CS2006A000019 (18 December 2006).

Frejlich, J.

Friedman, G.

I. D.Mayergoyz, G. Friedman, and C. Salling, “Comparison of the classical and generalized Preisach hysteresis models with experiments,” IEEE Trans. Magn. 25, 3925-3927 (1989).
[CrossRef]

Gabor, D.

D. Gabor, “Holography, 1948-1971,” Science 177, 299-313 (1972)..
[CrossRef] [PubMed]

Ge, P.

P. Ge and M. Jouaneh, “Generalized Preisach model for hysteresis nonlinearlity of piezoceramic actuators,” Precis. Eng. 20, 99-111 (1997).
[CrossRef]

Gizzi, C.

Goldberg, W. M.

Goldfarb, M.

M. Goldfarb and N. Celanovic, “Behavioral implications of piezoelectric stack actuators for control of micromanipulation,” in Proceedings of IEEE International Conference on Robotics and Automation 1, 226-231 (1996).

Günter, P.

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications I: Basic Effects, Springer Series in Optical Sciences (Springer-Verlag, 1988).

Hollberg, L.

E. A. Curtis, C. W. Oates, and L. Hollberg, “Precision metrology and interferometry with ultracold calcium atoms,” in Quantum Electronics and Laser Science, 2003, QELS. Postconference Digest, doi:10.1109/QELS.2003.1276366 (2003).

Hornix, E. J.

Huignard, J.-P.

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications I: Basic Effects, Springer Series in Optical Sciences (Springer-Verlag, 1988).

Jak, M. J. J.

Jiang, Z.

S. Chonan, Z. Jiang, and T. Yamamoto, “Nonlinear hysteresis compensation of piezoelectric ceramic actuators,” J. Intell. Mater. Syst. Struct. 7, 150-156 (1996).
[CrossRef]

Jouaneh, M.

P. Ge and M. Jouaneh, “Generalized Preisach model for hysteresis nonlinearlity of piezoceramic actuators,” Precis. Eng. 20, 99-111 (1997).
[CrossRef]

Jung, S.-B.

S.-B. Jung and S.-W. Kim, “Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control,” Precis. Eng. 16, 49-55 (1994).
[CrossRef]

Kim, S.-W.

S.-B. Jung and S.-W. Kim, “Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control,” Precis. Eng. 16, 49-55 (1994).
[CrossRef]

Law, R. L.

Mayergoyz, I. D.

I. D.Mayergoyz, G. Friedman, and C. Salling, “Comparison of the classical and generalized Preisach hysteresis models with experiments,” IEEE Trans. Magn. 25, 3925-3927 (1989).
[CrossRef]

Mendes, G. F.

Moran, S. E.

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Nayar, V. U.

V. R. Ravindran, A. V. S. S. S. R. Sarma, and V. U. Nayar, “Holographic nondestructive testing of low modulus materials,” Mater. Eval. 50, 1058-1065 (1992).

Neumann, D. B.

Oates, C. W.

E. A. Curtis, C. W. Oates, and L. Hollberg, “Precision metrology and interferometry with ultracold calcium atoms,” in Quantum Electronics and Laser Science, 2003, QELS. Postconference Digest, doi:10.1109/QELS.2003.1276366 (2003).

Ravindran, V. R.

V. R. Ravindran, A. V. S. S. S. R. Sarma, and V. U. Nayar, “Holographic nondestructive testing of low modulus materials,” Mater. Eval. 50, 1058-1065 (1992).

Rose, H. W.

Salling, C.

I. D.Mayergoyz, G. Friedman, and C. Salling, “Comparison of the classical and generalized Preisach hysteresis models with experiments,” IEEE Trans. Magn. 25, 3925-3927 (1989).
[CrossRef]

Sarma, A. V. S. S. S. R.

V. R. Ravindran, A. V. S. S. S. R. Sarma, and V. U. Nayar, “Holographic nondestructive testing of low modulus materials,” Mater. Eval. 50, 1058-1065 (1992).

Sukhov, A. V.

A. Veltri, R. Caputo, L. De Sio, C. Umeton, and A. V. Sukhov, “Two-wave coupling during the formation of POLICRYPS diffraction gratings: experimental results theoretical model,” Mol. Cryst. Liq. Cryst. 454, 273-284 (2006).
[CrossRef]

L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721-3727(2006).
[CrossRef] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Observation of two-wave coupling during the formation of POLICRYPS diffraction gratings,” Opt. Lett. 30, 1840-1842(2005).
[CrossRef] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Model for two beam coupling during the formation of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Phys. Lett. 87, 141108-141110 (2005).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Development of a new kind of holographic grating made of liquid crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261-1263.(2004).
[CrossRef] [PubMed]

A. d'Alessandro, R. Asquini, C. Gizzi, R. Caputo, C. Umeton, A. Veltri, and A. V. Sukhov, “Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices,” Opt. Lett. 29, 1405 -1407 (2004).
[CrossRef] [PubMed]

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Formation of a grating of submicron nematic layers by photopolymerization of nematic-containing mixtures,” J. Exp. Theor. Phys. 91, 1190 -1197 (2000).
[CrossRef]

L. De Sio, A. Veltri, R. Caputo, A. De Luca, A. V. Sukhov, and C. Umeton, “Sistema di controllo locale e stabilizzazione di un congegno per la scrittura dei reticoli olografici,” Italian Patent CZ2006A00005 (26 February 2006).

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

Umeton, C.

A. Veltri, R. Caputo, L. De Sio, C. Umeton, and A. V. Sukhov, “Two-wave coupling during the formation of POLICRYPS diffraction gratings: experimental results theoretical model,” Mol. Cryst. Liq. Cryst. 454, 273-284 (2006).
[CrossRef]

L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721-3727(2006).
[CrossRef] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Model for two beam coupling during the formation of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Phys. Lett. 87, 141108-141110 (2005).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Development of a new kind of holographic grating made of liquid crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261-1263.(2004).
[CrossRef] [PubMed]

A. d'Alessandro, R. Asquini, C. Gizzi, R. Caputo, C. Umeton, A. Veltri, and A. V. Sukhov, “Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices,” Opt. Lett. 29, 1405 -1407 (2004).
[CrossRef] [PubMed]

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Formation of a grating of submicron nematic layers by photopolymerization of nematic-containing mixtures,” J. Exp. Theor. Phys. 91, 1190 -1197 (2000).
[CrossRef]

A. D'Alessandro, D. Donisi, R. Asquini, R. Becherelli, L. De Sio, R. Caputo, and C. Umeton, “Filtro elettroottico accordabile e processo di fabbricazione,” Italian Patent request CS2006A000019 (18 December 2006).

L. De Sio, A. Veltri, R. Caputo, A. De Luca, A. V. Sukhov, and C. Umeton, “Sistema di controllo locale e stabilizzazione di un congegno per la scrittura dei reticoli olografici,” Italian Patent CZ2006A00005 (26 February 2006).

Umeton, C. P.

Ushakov, R. F.

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Formation of a grating of submicron nematic layers by photopolymerization of nematic-containing mixtures,” J. Exp. Theor. Phys. 91, 1190 -1197 (2000).
[CrossRef]

Veltri, A.

A. Veltri, R. Caputo, L. De Sio, C. Umeton, and A. V. Sukhov, “Two-wave coupling during the formation of POLICRYPS diffraction gratings: experimental results theoretical model,” Mol. Cryst. Liq. Cryst. 454, 273-284 (2006).
[CrossRef]

L. De Sio, R. Caputo, A. De Luca, A. Veltri, C. Umeton, and A. V. Sukhov, “In situ optical control and stabilization of the curing process of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Opt. 45, 3721-3727(2006).
[CrossRef] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Observation of two-wave coupling during the formation of POLICRYPS diffraction gratings,” Opt. Lett. 30, 1840-1842(2005).
[CrossRef] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Model for two beam coupling during the formation of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Phys. Lett. 87, 141108-141110 (2005).
[CrossRef]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Development of a new kind of holographic grating made of liquid crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261-1263.(2004).
[CrossRef] [PubMed]

A. d'Alessandro, R. Asquini, C. Gizzi, R. Caputo, C. Umeton, A. Veltri, and A. V. Sukhov, “Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices,” Opt. Lett. 29, 1405 -1407 (2004).
[CrossRef] [PubMed]

L. De Sio, A. Veltri, R. Caputo, A. De Luca, A. V. Sukhov, and C. Umeton, “Sistema di controllo locale e stabilizzazione di un congegno per la scrittura dei reticoli olografici,” Italian Patent CZ2006A00005 (26 February 2006).

Waters, J. P.

J. P. Waters, “Object motion compensation in CW holography,” in Holographic Nondestructive Testing, R. K. Erf, ed. (Academic, 1974), pp. 229-246.

Yamamoto, T.

S. Chonan, Z. Jiang, and T. Yamamoto, “Nonlinear hysteresis compensation of piezoelectric ceramic actuators,” J. Intell. Mater. Syst. Struct. 7, 150-156 (1996).
[CrossRef]

Zhao, F.

Zou, J.

Appl. Opt. (5)

Appl. Phys. Lett. (2)

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V.Sukhov, “Model for two beam coupling during the formation of holographic gratings with a nematic film-polymer-slice sequence structure,” Appl. Phys. Lett. 87, 141108-141110 (2005).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074-1076 (1994).
[CrossRef]

IEEE Trans. Magn. (1)

I. D.Mayergoyz, G. Friedman, and C. Salling, “Comparison of the classical and generalized Preisach hysteresis models with experiments,” IEEE Trans. Magn. 25, 3925-3927 (1989).
[CrossRef]

J. Exp. Theor. Phys. (1)

R. Caputo, A. V. Sukhov, C. Umeton, and R. F. Ushakov, “Formation of a grating of submicron nematic layers by photopolymerization of nematic-containing mixtures,” J. Exp. Theor. Phys. 91, 1190 -1197 (2000).
[CrossRef]

J. Intell. Mater. Syst. Struct. (1)

S. Chonan, Z. Jiang, and T. Yamamoto, “Nonlinear hysteresis compensation of piezoelectric ceramic actuators,” J. Intell. Mater. Syst. Struct. 7, 150-156 (1996).
[CrossRef]

Mater. Eval. (1)

V. R. Ravindran, A. V. S. S. S. R. Sarma, and V. U. Nayar, “Holographic nondestructive testing of low modulus materials,” Mater. Eval. 50, 1058-1065 (1992).

Mol. Cryst. Liq. Cryst. (1)

A. Veltri, R. Caputo, L. De Sio, C. Umeton, and A. V. Sukhov, “Two-wave coupling during the formation of POLICRYPS diffraction gratings: experimental results theoretical model,” Mol. Cryst. Liq. Cryst. 454, 273-284 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Precis. Eng. (2)

S.-B. Jung and S.-W. Kim, “Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control,” Precis. Eng. 16, 49-55 (1994).
[CrossRef]

P. Ge and M. Jouaneh, “Generalized Preisach model for hysteresis nonlinearlity of piezoceramic actuators,” Precis. Eng. 20, 99-111 (1997).
[CrossRef]

Proceedings of IEEE International Conference on Robotics and Automation (1)

M. Goldfarb and N. Celanovic, “Behavioral implications of piezoelectric stack actuators for control of micromanipulation,” in Proceedings of IEEE International Conference on Robotics and Automation 1, 226-231 (1996).

Science (1)

D. Gabor, “Holography, 1948-1971,” Science 177, 299-313 (1972)..
[CrossRef] [PubMed]

Other (7)

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications I: Basic Effects, Springer Series in Optical Sciences (Springer-Verlag, 1988).

E. A. Curtis, C. W. Oates, and L. Hollberg, “Precision metrology and interferometry with ultracold calcium atoms,” in Quantum Electronics and Laser Science, 2003, QELS. Postconference Digest, doi:10.1109/QELS.2003.1276366 (2003).

J. P. Waters, “Object motion compensation in CW holography,” in Holographic Nondestructive Testing, R. K. Erf, ed. (Academic, 1974), pp. 229-246.

A. D'Alessandro, D. Donisi, R. Asquini, R. Becherelli, L. De Sio, R. Caputo, and C. Umeton, “Filtro elettroottico accordabile e processo di fabbricazione,” Italian Patent request CS2006A000019 (18 December 2006).

Fringe Locker Inovar Devices, http://www.inovar-inc.com/index.html.

Fringe Locker Excalibur Engineering, http://www.excaliburengineering.com.

L. De Sio, A. Veltri, R. Caputo, A. De Luca, A. V. Sukhov, and C. Umeton, “Sistema di controllo locale e stabilizzazione di un congegno per la scrittura dei reticoli olografici,” Italian Patent CZ2006A00005 (26 February 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical holographic setup for UV curing gratings with stability check: P, polarizer; λ / 2 , half-wave plate; B E , beam expander; B S , beam splitter; 2 θ cur , total curing angle; M, mirrors; S, sample; PD 1 , first beam photodetector; P D 2 , second beam photodetector; P D 3 , diffracted and reflected beam photodetector. Inset: reference grating (positioned immediately below the sample area) that enables the stability check.

Fig. 2
Fig. 2

Reference interference signal V r e f is reported as a function of the piezomirror driving voltage V app . The voltage is increased along curve 1 and decreased along curve 2.

Fig. 3
Fig. 3

Hysteresis curve for the piezoelectric mirror (delay time of τ = 1 s ).

Fig. 4
Fig. 4

Hysteresis curve for the piezoelectric mirror (delay time of τ = 1 ms ).

Fig. 5
Fig. 5

Linear fit used for determination of the displacement factor.

Fig. 6
Fig. 6

Hysteresis curve of the piezoelectric mirror (delay time of τ = 10 s ).

Fig. 7
Fig. 7

Typical time behavior of the spatial displacement of the test grating with respect to the curing pattern. With the feedback action on (curve 1), the system is stable to within the accuracy limits of the piezo system. When the feedback action is off (curve 2), long-term fluctuation is present.

Fig. 8
Fig. 8

Stability check carried out by the introduction of a mechanical external perturbation.

Metrics