Abstract

To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100 degrees C," Lasers Surg. Med. 18, 231-240 (1996).
    [CrossRef] [PubMed]
  2. M. Ogura, S. Sato, M. Ishihara, S. Kawauchi, T. Arai, T. Matsui, A. Kurita, M. Kikuchi, H. Ashida, and M. Obara, "Myocardium tissue ablation with high-peak-power nanosecond 1064-nm and 532-nm pulsed lasers: influence of laser-induced plasma," Lasers Surg. Med. 31, 136-141 (2002).
    [CrossRef] [PubMed]
  3. R. Hofmann, R. Hartung, H. Schmidt-Kloiber, and E. Reichel, "First clinical experience with a Q-switched neodymium:YAG laser for urinary calculi," J. Urol. 141, 275-279 (1989).
    [PubMed]
  4. K. Rink, G. Delacretaz, and R. P. Salathe, "Fragmentation process of current laser lithotriptors," Lasers Surg. Med. 16, 134-146 (1995).
    [CrossRef] [PubMed]
  5. X. H. Hu, W. A. Wooden, S. J. Vore, M. J. Cariveau, Q. Fang, and G. W. Kalmus, "In vivo study of intradermal focusing for tattoo removal," Lasers Med. Sci. 17, 154-164 (2002).
    [CrossRef] [PubMed]
  6. D. Goldberg, ed., Laser Dermatology (Springer, 2005), Chap. 3.
    [CrossRef]
  7. S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, "Pulsed laser damage to optical fiber," Appl. Opt. 24, 3140-3148 (1985).
    [CrossRef] [PubMed]
  8. D. P. Hand and P. St. J. Russel, "Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse," Opt. Lett. 13, 767-780 (1988).
    [CrossRef] [PubMed]
  9. B. Richou, I. Schertz, I. Gobin, and J. Richou, "Delivery of 10 MW Nd:YAG laser pulses by large-core optical fibers: dependence of the laser intensity profile on beam propagation," Appl. Opt. 36, 1610-1614 (1997).
    [CrossRef] [PubMed]
  10. D. Su, A. A. P. Boechat, and J. D. C. Jones, "Beam delivery by large core fibers: effect of launching conditions on near-field output power," Appl. Opt. 31, 5816-5821 (1992).
    [CrossRef] [PubMed]
  11. T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, "New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers," Appl. Phys. B 72, 183-186 (2001).
  12. Y. Matsuura, K. Hanamoto, S. Sato, and M. Miyagi, "Hollow-fiber delivery of high-power pulsed Nd:YAG laser light," Opt. Lett. 23, 1858-1860 (1998).
    [CrossRef]
  13. Y. Matsuura, G. Takada, T. Yamamoto, Y. W. Shi, and M. Miyagi, "Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers," Appl. Opt. 41, 442-445 (2002).
    [CrossRef] [PubMed]
  14. N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, and S. Ruschin, "Use of metallic and dielectric films for hollow fibers," Fiber Integr. Opt. 6, 347-361 (1987).
    [CrossRef]
  15. T. Abel, J. Hirsch, and J. A. Harrington, "Hollow glass waveguides for broadband infrared transmission," Opt. Lett. 19, 1034-1036 (1994).
    [CrossRef] [PubMed]
  16. Y. Matsuura and M. Miyagi, "Flexible hollow waveguides for delivery of excimer-laser light," Opt. Lett. 23, 1226-1228 (1998).
    [CrossRef]
  17. S. Sato, H. Ashida, T. Arai, Y. Shi, Y. Matsuura, and M. Miyagi, "Vacuum-cored hollow waveguide for transmission of high-energy, nanosecond Nd:YAG laser pulses and its application to biological tissue ablation," Opt. Lett. 25, 49-51 (2000).
    [CrossRef]
  18. O. Yilmaz, M. Miyagi, and Y. Matsuura, "Bundled hollow optical fibers for transmission of high-peak-power Q-switched Nd:YAG laser pulses," Appl. Opt. 45, 7174-7178 (2006).
    [CrossRef] [PubMed]

2006

2002

M. Ogura, S. Sato, M. Ishihara, S. Kawauchi, T. Arai, T. Matsui, A. Kurita, M. Kikuchi, H. Ashida, and M. Obara, "Myocardium tissue ablation with high-peak-power nanosecond 1064-nm and 532-nm pulsed lasers: influence of laser-induced plasma," Lasers Surg. Med. 31, 136-141 (2002).
[CrossRef] [PubMed]

X. H. Hu, W. A. Wooden, S. J. Vore, M. J. Cariveau, Q. Fang, and G. W. Kalmus, "In vivo study of intradermal focusing for tattoo removal," Lasers Med. Sci. 17, 154-164 (2002).
[CrossRef] [PubMed]

Y. Matsuura, G. Takada, T. Yamamoto, Y. W. Shi, and M. Miyagi, "Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers," Appl. Opt. 41, 442-445 (2002).
[CrossRef] [PubMed]

2001

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, "New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers," Appl. Phys. B 72, 183-186 (2001).

2000

1998

1997

1996

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100 degrees C," Lasers Surg. Med. 18, 231-240 (1996).
[CrossRef] [PubMed]

1995

K. Rink, G. Delacretaz, and R. P. Salathe, "Fragmentation process of current laser lithotriptors," Lasers Surg. Med. 16, 134-146 (1995).
[CrossRef] [PubMed]

1994

1992

1989

R. Hofmann, R. Hartung, H. Schmidt-Kloiber, and E. Reichel, "First clinical experience with a Q-switched neodymium:YAG laser for urinary calculi," J. Urol. 141, 275-279 (1989).
[PubMed]

1988

1987

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, and S. Ruschin, "Use of metallic and dielectric films for hollow fibers," Fiber Integr. Opt. 6, 347-361 (1987).
[CrossRef]

1985

Abel, T.

Allison, S. W.

Arai, T.

M. Ogura, S. Sato, M. Ishihara, S. Kawauchi, T. Arai, T. Matsui, A. Kurita, M. Kikuchi, H. Ashida, and M. Obara, "Myocardium tissue ablation with high-peak-power nanosecond 1064-nm and 532-nm pulsed lasers: influence of laser-induced plasma," Lasers Surg. Med. 31, 136-141 (2002).
[CrossRef] [PubMed]

S. Sato, H. Ashida, T. Arai, Y. Shi, Y. Matsuura, and M. Miyagi, "Vacuum-cored hollow waveguide for transmission of high-energy, nanosecond Nd:YAG laser pulses and its application to biological tissue ablation," Opt. Lett. 25, 49-51 (2000).
[CrossRef]

Ashida, H.

M. Ogura, S. Sato, M. Ishihara, S. Kawauchi, T. Arai, T. Matsui, A. Kurita, M. Kikuchi, H. Ashida, and M. Obara, "Myocardium tissue ablation with high-peak-power nanosecond 1064-nm and 532-nm pulsed lasers: influence of laser-induced plasma," Lasers Surg. Med. 31, 136-141 (2002).
[CrossRef] [PubMed]

S. Sato, H. Ashida, T. Arai, Y. Shi, Y. Matsuura, and M. Miyagi, "Vacuum-cored hollow waveguide for transmission of high-energy, nanosecond Nd:YAG laser pulses and its application to biological tissue ablation," Opt. Lett. 25, 49-51 (2000).
[CrossRef]

Boechat, A. A. P.

Cariveau, M. J.

X. H. Hu, W. A. Wooden, S. J. Vore, M. J. Cariveau, Q. Fang, and G. W. Kalmus, "In vivo study of intradermal focusing for tattoo removal," Lasers Med. Sci. 17, 154-164 (2002).
[CrossRef] [PubMed]

Croitoru, N.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, and S. Ruschin, "Use of metallic and dielectric films for hollow fibers," Fiber Integr. Opt. 6, 347-361 (1987).
[CrossRef]

Delacretaz, G.

K. Rink, G. Delacretaz, and R. P. Salathe, "Fragmentation process of current laser lithotriptors," Lasers Surg. Med. 16, 134-146 (1995).
[CrossRef] [PubMed]

Dror, J.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, and S. Ruschin, "Use of metallic and dielectric films for hollow fibers," Fiber Integr. Opt. 6, 347-361 (1987).
[CrossRef]

Esenaliev, R. O.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100 degrees C," Lasers Surg. Med. 18, 231-240 (1996).
[CrossRef] [PubMed]

Fang, Q.

X. H. Hu, W. A. Wooden, S. J. Vore, M. J. Cariveau, Q. Fang, and G. W. Kalmus, "In vivo study of intradermal focusing for tattoo removal," Lasers Med. Sci. 17, 154-164 (2002).
[CrossRef] [PubMed]

Gillies, G. T.

Gobin, I.

Goldberg, D.

D. Goldberg, ed., Laser Dermatology (Springer, 2005), Chap. 3.
[CrossRef]

Goldenberg, E.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, and S. Ruschin, "Use of metallic and dielectric films for hollow fibers," Fiber Integr. Opt. 6, 347-361 (1987).
[CrossRef]

Hanamoto, K.

Hand, D. P.

Harrington, J. A.

Hartung, R.

R. Hofmann, R. Hartung, H. Schmidt-Kloiber, and E. Reichel, "First clinical experience with a Q-switched neodymium:YAG laser for urinary calculi," J. Urol. 141, 275-279 (1989).
[PubMed]

Hirsch, J.

Hofmann, R.

R. Hofmann, R. Hartung, H. Schmidt-Kloiber, and E. Reichel, "First clinical experience with a Q-switched neodymium:YAG laser for urinary calculi," J. Urol. 141, 275-279 (1989).
[PubMed]

Hu, X. H.

X. H. Hu, W. A. Wooden, S. J. Vore, M. J. Cariveau, Q. Fang, and G. W. Kalmus, "In vivo study of intradermal focusing for tattoo removal," Lasers Med. Sci. 17, 154-164 (2002).
[CrossRef] [PubMed]

Ishihara, M.

M. Ogura, S. Sato, M. Ishihara, S. Kawauchi, T. Arai, T. Matsui, A. Kurita, M. Kikuchi, H. Ashida, and M. Obara, "Myocardium tissue ablation with high-peak-power nanosecond 1064-nm and 532-nm pulsed lasers: influence of laser-induced plasma," Lasers Surg. Med. 31, 136-141 (2002).
[CrossRef] [PubMed]

Jacques, S. L.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100 degrees C," Lasers Surg. Med. 18, 231-240 (1996).
[CrossRef] [PubMed]

Jones, J. D. C.

Kalmus, G. W.

X. H. Hu, W. A. Wooden, S. J. Vore, M. J. Cariveau, Q. Fang, and G. W. Kalmus, "In vivo study of intradermal focusing for tattoo removal," Lasers Med. Sci. 17, 154-164 (2002).
[CrossRef] [PubMed]

Karlitschek, P.

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, "New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers," Appl. Phys. B 72, 183-186 (2001).

Kawauchi, S.

M. Ogura, S. Sato, M. Ishihara, S. Kawauchi, T. Arai, T. Matsui, A. Kurita, M. Kikuchi, H. Ashida, and M. Obara, "Myocardium tissue ablation with high-peak-power nanosecond 1064-nm and 532-nm pulsed lasers: influence of laser-induced plasma," Lasers Surg. Med. 31, 136-141 (2002).
[CrossRef] [PubMed]

Kikuchi, M.

M. Ogura, S. Sato, M. Ishihara, S. Kawauchi, T. Arai, T. Matsui, A. Kurita, M. Kikuchi, H. Ashida, and M. Obara, "Myocardium tissue ablation with high-peak-power nanosecond 1064-nm and 532-nm pulsed lasers: influence of laser-induced plasma," Lasers Surg. Med. 31, 136-141 (2002).
[CrossRef] [PubMed]

Kurita, A.

M. Ogura, S. Sato, M. Ishihara, S. Kawauchi, T. Arai, T. Matsui, A. Kurita, M. Kikuchi, H. Ashida, and M. Obara, "Myocardium tissue ablation with high-peak-power nanosecond 1064-nm and 532-nm pulsed lasers: influence of laser-induced plasma," Lasers Surg. Med. 31, 136-141 (2002).
[CrossRef] [PubMed]

Magnuson, D. W.

Marowsky, G.

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, "New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers," Appl. Phys. B 72, 183-186 (2001).

Matsui, T.

M. Ogura, S. Sato, M. Ishihara, S. Kawauchi, T. Arai, T. Matsui, A. Kurita, M. Kikuchi, H. Ashida, and M. Obara, "Myocardium tissue ablation with high-peak-power nanosecond 1064-nm and 532-nm pulsed lasers: influence of laser-induced plasma," Lasers Surg. Med. 31, 136-141 (2002).
[CrossRef] [PubMed]

Matsuura, Y.

Mendlovic, D.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, and S. Ruschin, "Use of metallic and dielectric films for hollow fibers," Fiber Integr. Opt. 6, 347-361 (1987).
[CrossRef]

Miyagi, M.

Obara, M.

M. Ogura, S. Sato, M. Ishihara, S. Kawauchi, T. Arai, T. Matsui, A. Kurita, M. Kikuchi, H. Ashida, and M. Obara, "Myocardium tissue ablation with high-peak-power nanosecond 1064-nm and 532-nm pulsed lasers: influence of laser-induced plasma," Lasers Surg. Med. 31, 136-141 (2002).
[CrossRef] [PubMed]

Ogura, M.

M. Ogura, S. Sato, M. Ishihara, S. Kawauchi, T. Arai, T. Matsui, A. Kurita, M. Kikuchi, H. Ashida, and M. Obara, "Myocardium tissue ablation with high-peak-power nanosecond 1064-nm and 532-nm pulsed lasers: influence of laser-induced plasma," Lasers Surg. Med. 31, 136-141 (2002).
[CrossRef] [PubMed]

Oraevsky, A. A.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100 degrees C," Lasers Surg. Med. 18, 231-240 (1996).
[CrossRef] [PubMed]

Pagano, T. S.

Reichel, E.

R. Hofmann, R. Hartung, H. Schmidt-Kloiber, and E. Reichel, "First clinical experience with a Q-switched neodymium:YAG laser for urinary calculi," J. Urol. 141, 275-279 (1989).
[PubMed]

Richou, B.

Richou, J.

Rink, K.

K. Rink, G. Delacretaz, and R. P. Salathe, "Fragmentation process of current laser lithotriptors," Lasers Surg. Med. 16, 134-146 (1995).
[CrossRef] [PubMed]

Ruschin, S.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, and S. Ruschin, "Use of metallic and dielectric films for hollow fibers," Fiber Integr. Opt. 6, 347-361 (1987).
[CrossRef]

Russel, P. St. J.

Salathe, R. P.

K. Rink, G. Delacretaz, and R. P. Salathe, "Fragmentation process of current laser lithotriptors," Lasers Surg. Med. 16, 134-146 (1995).
[CrossRef] [PubMed]

Sano, Y.

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, "New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers," Appl. Phys. B 72, 183-186 (2001).

Sato, S.

Schertz, I.

Schmidt-Kloiber, H.

R. Hofmann, R. Hartung, H. Schmidt-Kloiber, and E. Reichel, "First clinical experience with a Q-switched neodymium:YAG laser for urinary calculi," J. Urol. 141, 275-279 (1989).
[PubMed]

Schmidt-Uhlig, T.

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, "New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers," Appl. Phys. B 72, 183-186 (2001).

Shi, Y.

Shi, Y. W.

Su, D.

Takada, G.

Tittel, F. K.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100 degrees C," Lasers Surg. Med. 18, 231-240 (1996).
[CrossRef] [PubMed]

Vore, S. J.

X. H. Hu, W. A. Wooden, S. J. Vore, M. J. Cariveau, Q. Fang, and G. W. Kalmus, "In vivo study of intradermal focusing for tattoo removal," Lasers Med. Sci. 17, 154-164 (2002).
[CrossRef] [PubMed]

Wooden, W. A.

X. H. Hu, W. A. Wooden, S. J. Vore, M. J. Cariveau, Q. Fang, and G. W. Kalmus, "In vivo study of intradermal focusing for tattoo removal," Lasers Med. Sci. 17, 154-164 (2002).
[CrossRef] [PubMed]

Yamamoto, T.

Yilmaz, O.

Appl. Opt.

Appl. Phys. B

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, "New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers," Appl. Phys. B 72, 183-186 (2001).

Fiber Integr. Opt.

N. Croitoru, J. Dror, E. Goldenberg, D. Mendlovic, and S. Ruschin, "Use of metallic and dielectric films for hollow fibers," Fiber Integr. Opt. 6, 347-361 (1987).
[CrossRef]

J. Urol.

R. Hofmann, R. Hartung, H. Schmidt-Kloiber, and E. Reichel, "First clinical experience with a Q-switched neodymium:YAG laser for urinary calculi," J. Urol. 141, 275-279 (1989).
[PubMed]

Lasers Med. Sci.

X. H. Hu, W. A. Wooden, S. J. Vore, M. J. Cariveau, Q. Fang, and G. W. Kalmus, "In vivo study of intradermal focusing for tattoo removal," Lasers Med. Sci. 17, 154-164 (2002).
[CrossRef] [PubMed]

Lasers Surg. Med.

K. Rink, G. Delacretaz, and R. P. Salathe, "Fragmentation process of current laser lithotriptors," Lasers Surg. Med. 16, 134-146 (1995).
[CrossRef] [PubMed]

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, "Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100 degrees C," Lasers Surg. Med. 18, 231-240 (1996).
[CrossRef] [PubMed]

M. Ogura, S. Sato, M. Ishihara, S. Kawauchi, T. Arai, T. Matsui, A. Kurita, M. Kikuchi, H. Ashida, and M. Obara, "Myocardium tissue ablation with high-peak-power nanosecond 1064-nm and 532-nm pulsed lasers: influence of laser-induced plasma," Lasers Surg. Med. 31, 136-141 (2002).
[CrossRef] [PubMed]

Opt. Lett.

Other

D. Goldberg, ed., Laser Dermatology (Springer, 2005), Chap. 3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

AFM pictures of silver film surfaces coated (a) with and (b) without SnCl2 pretreatment.

Fig. 2
Fig. 2

Output energy from silver-coated hollow fibers fabricated with and without SnCl2 pretreatment. Input energy was 40 mJ, and fibers were 1mm in diameter and 1 m in length.

Fig. 3
Fig. 3

Loss increases in silver-coated hollow fibers after being irradiated with 6000 pulses of second-harmonic Nd:YAG laser light. Input energy was 100 mJ.

Fig. 4
Fig. 4

Change in output energy from silver-coated hollow fibers when the second YAG pulses with an energy of 100 mJ were launched into the fiber. Fibers were bent 90° at a bending radius of 50cm . Fiber length and diameter were 1 m and 1mm , respectively.

Fig. 5
Fig. 5

Measured surface roughness of inner silver layer for hollow optical fibers formed at different deposition times.

Fig. 6
Fig. 6

Measured loss spectra of aluminum-coated hollow optical fibers for ultraviolet light with and without a silver preliminary layer. Fibers were 1.2 m in length and 1mm in inner diameter.

Fig. 7
Fig. 7

Change in output energy from aluminum-coated hollow fibers when the fibers are irradiated with the fourth harmonic of YAG pulses at an energy of 45 mJ. Fibers were bent 90° at a bending radius of 50cm . Fiber length and diameter were 1.2 m and 1mm , respectively.

Metrics