Abstract

Spherical retroreflectors have a much greater acceptance angle than conventional retroreflectors such as corner cubes. However, the optical performance of known spherical reflectors is limited by spherical aberration. It is shown that third-order spherical aberration may be corrected by using two or more layers of homogeneous optical media of different refractive indices. The performance of the retroreflector is characterized by the scattering (or radar) cross section, which is calculated by using optical design software. A practical spherical reflector is described that offers a significant increase in optical performance over existing devices. No gradient index components are required, and the device is constructed by using conventional optical materials and fabrication techniques. The experimental results confirm that the device operates correctly at the design wavelength of 690 nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. A. Handerek and L. C. Laycock, "Feasibility of retroreflective free-space optical communication using retroreflectors with very wide field of view," in Advanced Free-Space Optical Communications Techniques and Technologies, M. Ross and A. M. Scott, eds., Proc. SPIE 5614, 1-9 (2004).
    [CrossRef]
  2. M. L. Biermann, W. S. Rabinovich, R. Mahon, and G. C. Gilbreath, "Design and analysis of a diffraction-limited cat's-eye retroreflector," Opt. Eng. 41, 1655-1660 (2002).
    [CrossRef]
  3. R. B. Nilson and X. J. Lu, "Optimum design of spherical retroreflectors with refractive indices close to 2.0," Trans. Inst. Meas. Control (London) [0142-3312] 18, 212-215 (1996).
    [CrossRef]
  4. T. Takatsuji, M. Goto, S. Osawa, R. Yin, and T. Kurosawa, "Whole viewing angle cat's eye retroreflector as a target for laser trackers," Meas. Sci. Technol. 10, N87-N90 (1999).
    [CrossRef]
  5. B. Yang and H. Friedman, Ray-tracing Studies for a Whole-Viewing Angle Retroreflector (Argonne National Laboratory, Argonne, Illinois, 1999).
  6. L. Yongbing, Z. Guoxiong, and L. Zhen, "An improved cat's-eye retroreflector used in laser tracking interferometer system," Meas. Sci. Technol. 14, N36-N40 (2003).
    [CrossRef]
  7. K. Kikuchi, T. Morikawa, J. Shimada, and K. Sakurai, "Cladded radially inhomogenous sphere lenses," Appl. Opt. 20, 388-394 (1981).
    [CrossRef] [PubMed]
  8. V. Handerek, H. McArdle, T. Willats, N. Psaila, and L. Laycock, "Experimental retroreflectors with very wide field of view for free-space optical communications," in Proceedings of 2nd Electro Magnetic Remote Sensing Defense Technology Centre Technical Conference (Edinburgh, 2005), pp. 1-6.
    [PubMed]
  9. V. Shargorodsky, V. Vasilev, N. Soyuzova, V. Burmistrov, I. Gashkin, T. Khorosheva, and E. Nikolaev, "Experimental spherical retroreflector on board the Meteor-3M satellite," in Proceedings of the Twelfth International Workshop on Laser Ranging, Malera, Italy (2000), pp. 1-5.
  10. V. Burmistrov, N. Parkhomenko, Y. Roy, V. Shargorodsky, J. D. Vasiliev, S. Habib, V. Glotov, and N. Sokolov, "Spherical retroreflectors with an extremely small target error: International experiment in space," in Proceedings of 13th International Workshop on Laser Ranging (Washington D.C., 2002), pp. 1-6.
    [PubMed]
  11. P. Z. Peebles, Radar Principles (Wiley, 1998).
  12. M. H. Weik, Communications Standard Dictionary (Chapman & Hall, 1997).
    [CrossRef]
  13. P. W. Wyman, "Definition of laser radar cross section," Appl. Opt. 7, 207 (1968).
    [CrossRef] [PubMed]
  14. A. Ames, K. Meyer, and D. Medina, "Experimental measurements of radiometric LADAR calibration targets," in Laser Source and System Technology for Defense and Security, G. L. Wood, ed., Proc. SPIE 5792, 120-128 (2005).
    [CrossRef]
  15. N. J. Abel, M. A. Marciniak, M. B. Haeri, and S. C. Cain, "Wave-optics modeling of aberration effects in optical cross section measurements," Opt. Eng. 44, 084302.1-084302.8 (2005).
    [CrossRef]
  16. W. L. Wolfe and G. W. Zissis, Infrared Handbook, revised ed. (Office of Naval Research, Washington D.C., 1985).
  17. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).
  18. http://www.chgsouthampton.com.
  19. W. T. Welford, Aberrations of the Symmetrical Optical System (Academic, 1974).
  20. See GlassBank at www.ifmo.ru.
  21. E. Langenbach, "Melt-dependent refractive index interpolation for optical glasses," in Design and Engineering of Optical Systems II, F. Merkle, ed., Proc. SPIE 3737, 57-64 (1999).

2005 (2)

A. Ames, K. Meyer, and D. Medina, "Experimental measurements of radiometric LADAR calibration targets," in Laser Source and System Technology for Defense and Security, G. L. Wood, ed., Proc. SPIE 5792, 120-128 (2005).
[CrossRef]

N. J. Abel, M. A. Marciniak, M. B. Haeri, and S. C. Cain, "Wave-optics modeling of aberration effects in optical cross section measurements," Opt. Eng. 44, 084302.1-084302.8 (2005).
[CrossRef]

2004 (1)

V. A. Handerek and L. C. Laycock, "Feasibility of retroreflective free-space optical communication using retroreflectors with very wide field of view," in Advanced Free-Space Optical Communications Techniques and Technologies, M. Ross and A. M. Scott, eds., Proc. SPIE 5614, 1-9 (2004).
[CrossRef]

2003 (1)

L. Yongbing, Z. Guoxiong, and L. Zhen, "An improved cat's-eye retroreflector used in laser tracking interferometer system," Meas. Sci. Technol. 14, N36-N40 (2003).
[CrossRef]

2002 (1)

M. L. Biermann, W. S. Rabinovich, R. Mahon, and G. C. Gilbreath, "Design and analysis of a diffraction-limited cat's-eye retroreflector," Opt. Eng. 41, 1655-1660 (2002).
[CrossRef]

1999 (2)

T. Takatsuji, M. Goto, S. Osawa, R. Yin, and T. Kurosawa, "Whole viewing angle cat's eye retroreflector as a target for laser trackers," Meas. Sci. Technol. 10, N87-N90 (1999).
[CrossRef]

E. Langenbach, "Melt-dependent refractive index interpolation for optical glasses," in Design and Engineering of Optical Systems II, F. Merkle, ed., Proc. SPIE 3737, 57-64 (1999).

1996 (1)

R. B. Nilson and X. J. Lu, "Optimum design of spherical retroreflectors with refractive indices close to 2.0," Trans. Inst. Meas. Control (London) [0142-3312] 18, 212-215 (1996).
[CrossRef]

1981 (1)

1968 (1)

Abel, N. J.

N. J. Abel, M. A. Marciniak, M. B. Haeri, and S. C. Cain, "Wave-optics modeling of aberration effects in optical cross section measurements," Opt. Eng. 44, 084302.1-084302.8 (2005).
[CrossRef]

Ames, A.

A. Ames, K. Meyer, and D. Medina, "Experimental measurements of radiometric LADAR calibration targets," in Laser Source and System Technology for Defense and Security, G. L. Wood, ed., Proc. SPIE 5792, 120-128 (2005).
[CrossRef]

Biermann, M. L.

M. L. Biermann, W. S. Rabinovich, R. Mahon, and G. C. Gilbreath, "Design and analysis of a diffraction-limited cat's-eye retroreflector," Opt. Eng. 41, 1655-1660 (2002).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).

Burmistrov, V.

V. Burmistrov, N. Parkhomenko, Y. Roy, V. Shargorodsky, J. D. Vasiliev, S. Habib, V. Glotov, and N. Sokolov, "Spherical retroreflectors with an extremely small target error: International experiment in space," in Proceedings of 13th International Workshop on Laser Ranging (Washington D.C., 2002), pp. 1-6.
[PubMed]

V. Shargorodsky, V. Vasilev, N. Soyuzova, V. Burmistrov, I. Gashkin, T. Khorosheva, and E. Nikolaev, "Experimental spherical retroreflector on board the Meteor-3M satellite," in Proceedings of the Twelfth International Workshop on Laser Ranging, Malera, Italy (2000), pp. 1-5.

Cain, S. C.

N. J. Abel, M. A. Marciniak, M. B. Haeri, and S. C. Cain, "Wave-optics modeling of aberration effects in optical cross section measurements," Opt. Eng. 44, 084302.1-084302.8 (2005).
[CrossRef]

Friedman, H.

B. Yang and H. Friedman, Ray-tracing Studies for a Whole-Viewing Angle Retroreflector (Argonne National Laboratory, Argonne, Illinois, 1999).

Gashkin, I.

V. Shargorodsky, V. Vasilev, N. Soyuzova, V. Burmistrov, I. Gashkin, T. Khorosheva, and E. Nikolaev, "Experimental spherical retroreflector on board the Meteor-3M satellite," in Proceedings of the Twelfth International Workshop on Laser Ranging, Malera, Italy (2000), pp. 1-5.

Gilbreath, G. C.

M. L. Biermann, W. S. Rabinovich, R. Mahon, and G. C. Gilbreath, "Design and analysis of a diffraction-limited cat's-eye retroreflector," Opt. Eng. 41, 1655-1660 (2002).
[CrossRef]

Glotov, V.

V. Burmistrov, N. Parkhomenko, Y. Roy, V. Shargorodsky, J. D. Vasiliev, S. Habib, V. Glotov, and N. Sokolov, "Spherical retroreflectors with an extremely small target error: International experiment in space," in Proceedings of 13th International Workshop on Laser Ranging (Washington D.C., 2002), pp. 1-6.
[PubMed]

Goto, M.

T. Takatsuji, M. Goto, S. Osawa, R. Yin, and T. Kurosawa, "Whole viewing angle cat's eye retroreflector as a target for laser trackers," Meas. Sci. Technol. 10, N87-N90 (1999).
[CrossRef]

Guoxiong, Z.

L. Yongbing, Z. Guoxiong, and L. Zhen, "An improved cat's-eye retroreflector used in laser tracking interferometer system," Meas. Sci. Technol. 14, N36-N40 (2003).
[CrossRef]

Habib, S.

V. Burmistrov, N. Parkhomenko, Y. Roy, V. Shargorodsky, J. D. Vasiliev, S. Habib, V. Glotov, and N. Sokolov, "Spherical retroreflectors with an extremely small target error: International experiment in space," in Proceedings of 13th International Workshop on Laser Ranging (Washington D.C., 2002), pp. 1-6.
[PubMed]

Haeri, M. B.

N. J. Abel, M. A. Marciniak, M. B. Haeri, and S. C. Cain, "Wave-optics modeling of aberration effects in optical cross section measurements," Opt. Eng. 44, 084302.1-084302.8 (2005).
[CrossRef]

Handerek, V.

V. Handerek, H. McArdle, T. Willats, N. Psaila, and L. Laycock, "Experimental retroreflectors with very wide field of view for free-space optical communications," in Proceedings of 2nd Electro Magnetic Remote Sensing Defense Technology Centre Technical Conference (Edinburgh, 2005), pp. 1-6.
[PubMed]

Handerek, V. A.

V. A. Handerek and L. C. Laycock, "Feasibility of retroreflective free-space optical communication using retroreflectors with very wide field of view," in Advanced Free-Space Optical Communications Techniques and Technologies, M. Ross and A. M. Scott, eds., Proc. SPIE 5614, 1-9 (2004).
[CrossRef]

Khorosheva, T.

V. Shargorodsky, V. Vasilev, N. Soyuzova, V. Burmistrov, I. Gashkin, T. Khorosheva, and E. Nikolaev, "Experimental spherical retroreflector on board the Meteor-3M satellite," in Proceedings of the Twelfth International Workshop on Laser Ranging, Malera, Italy (2000), pp. 1-5.

Kikuchi, K.

Kurosawa, T.

T. Takatsuji, M. Goto, S. Osawa, R. Yin, and T. Kurosawa, "Whole viewing angle cat's eye retroreflector as a target for laser trackers," Meas. Sci. Technol. 10, N87-N90 (1999).
[CrossRef]

Langenbach, E.

E. Langenbach, "Melt-dependent refractive index interpolation for optical glasses," in Design and Engineering of Optical Systems II, F. Merkle, ed., Proc. SPIE 3737, 57-64 (1999).

Laycock, L.

V. Handerek, H. McArdle, T. Willats, N. Psaila, and L. Laycock, "Experimental retroreflectors with very wide field of view for free-space optical communications," in Proceedings of 2nd Electro Magnetic Remote Sensing Defense Technology Centre Technical Conference (Edinburgh, 2005), pp. 1-6.
[PubMed]

Laycock, L. C.

V. A. Handerek and L. C. Laycock, "Feasibility of retroreflective free-space optical communication using retroreflectors with very wide field of view," in Advanced Free-Space Optical Communications Techniques and Technologies, M. Ross and A. M. Scott, eds., Proc. SPIE 5614, 1-9 (2004).
[CrossRef]

Lu, X. J.

R. B. Nilson and X. J. Lu, "Optimum design of spherical retroreflectors with refractive indices close to 2.0," Trans. Inst. Meas. Control (London) [0142-3312] 18, 212-215 (1996).
[CrossRef]

Mahon, R.

M. L. Biermann, W. S. Rabinovich, R. Mahon, and G. C. Gilbreath, "Design and analysis of a diffraction-limited cat's-eye retroreflector," Opt. Eng. 41, 1655-1660 (2002).
[CrossRef]

Marciniak, M. A.

N. J. Abel, M. A. Marciniak, M. B. Haeri, and S. C. Cain, "Wave-optics modeling of aberration effects in optical cross section measurements," Opt. Eng. 44, 084302.1-084302.8 (2005).
[CrossRef]

McArdle, H.

V. Handerek, H. McArdle, T. Willats, N. Psaila, and L. Laycock, "Experimental retroreflectors with very wide field of view for free-space optical communications," in Proceedings of 2nd Electro Magnetic Remote Sensing Defense Technology Centre Technical Conference (Edinburgh, 2005), pp. 1-6.
[PubMed]

Medina, D.

A. Ames, K. Meyer, and D. Medina, "Experimental measurements of radiometric LADAR calibration targets," in Laser Source and System Technology for Defense and Security, G. L. Wood, ed., Proc. SPIE 5792, 120-128 (2005).
[CrossRef]

Meyer, K.

A. Ames, K. Meyer, and D. Medina, "Experimental measurements of radiometric LADAR calibration targets," in Laser Source and System Technology for Defense and Security, G. L. Wood, ed., Proc. SPIE 5792, 120-128 (2005).
[CrossRef]

Morikawa, T.

Nikolaev, E.

V. Shargorodsky, V. Vasilev, N. Soyuzova, V. Burmistrov, I. Gashkin, T. Khorosheva, and E. Nikolaev, "Experimental spherical retroreflector on board the Meteor-3M satellite," in Proceedings of the Twelfth International Workshop on Laser Ranging, Malera, Italy (2000), pp. 1-5.

Nilson, R. B.

R. B. Nilson and X. J. Lu, "Optimum design of spherical retroreflectors with refractive indices close to 2.0," Trans. Inst. Meas. Control (London) [0142-3312] 18, 212-215 (1996).
[CrossRef]

Osawa, S.

T. Takatsuji, M. Goto, S. Osawa, R. Yin, and T. Kurosawa, "Whole viewing angle cat's eye retroreflector as a target for laser trackers," Meas. Sci. Technol. 10, N87-N90 (1999).
[CrossRef]

Parkhomenko, N.

V. Burmistrov, N. Parkhomenko, Y. Roy, V. Shargorodsky, J. D. Vasiliev, S. Habib, V. Glotov, and N. Sokolov, "Spherical retroreflectors with an extremely small target error: International experiment in space," in Proceedings of 13th International Workshop on Laser Ranging (Washington D.C., 2002), pp. 1-6.
[PubMed]

Peebles, P. Z.

P. Z. Peebles, Radar Principles (Wiley, 1998).

Psaila, N.

V. Handerek, H. McArdle, T. Willats, N. Psaila, and L. Laycock, "Experimental retroreflectors with very wide field of view for free-space optical communications," in Proceedings of 2nd Electro Magnetic Remote Sensing Defense Technology Centre Technical Conference (Edinburgh, 2005), pp. 1-6.
[PubMed]

Rabinovich, W. S.

M. L. Biermann, W. S. Rabinovich, R. Mahon, and G. C. Gilbreath, "Design and analysis of a diffraction-limited cat's-eye retroreflector," Opt. Eng. 41, 1655-1660 (2002).
[CrossRef]

Roy, Y.

V. Burmistrov, N. Parkhomenko, Y. Roy, V. Shargorodsky, J. D. Vasiliev, S. Habib, V. Glotov, and N. Sokolov, "Spherical retroreflectors with an extremely small target error: International experiment in space," in Proceedings of 13th International Workshop on Laser Ranging (Washington D.C., 2002), pp. 1-6.
[PubMed]

Sakurai, K.

Shargorodsky, V.

V. Burmistrov, N. Parkhomenko, Y. Roy, V. Shargorodsky, J. D. Vasiliev, S. Habib, V. Glotov, and N. Sokolov, "Spherical retroreflectors with an extremely small target error: International experiment in space," in Proceedings of 13th International Workshop on Laser Ranging (Washington D.C., 2002), pp. 1-6.
[PubMed]

V. Shargorodsky, V. Vasilev, N. Soyuzova, V. Burmistrov, I. Gashkin, T. Khorosheva, and E. Nikolaev, "Experimental spherical retroreflector on board the Meteor-3M satellite," in Proceedings of the Twelfth International Workshop on Laser Ranging, Malera, Italy (2000), pp. 1-5.

Shimada, J.

Sokolov, N.

V. Burmistrov, N. Parkhomenko, Y. Roy, V. Shargorodsky, J. D. Vasiliev, S. Habib, V. Glotov, and N. Sokolov, "Spherical retroreflectors with an extremely small target error: International experiment in space," in Proceedings of 13th International Workshop on Laser Ranging (Washington D.C., 2002), pp. 1-6.
[PubMed]

Soyuzova, N.

V. Shargorodsky, V. Vasilev, N. Soyuzova, V. Burmistrov, I. Gashkin, T. Khorosheva, and E. Nikolaev, "Experimental spherical retroreflector on board the Meteor-3M satellite," in Proceedings of the Twelfth International Workshop on Laser Ranging, Malera, Italy (2000), pp. 1-5.

Takatsuji, T.

T. Takatsuji, M. Goto, S. Osawa, R. Yin, and T. Kurosawa, "Whole viewing angle cat's eye retroreflector as a target for laser trackers," Meas. Sci. Technol. 10, N87-N90 (1999).
[CrossRef]

Vasilev, V.

V. Shargorodsky, V. Vasilev, N. Soyuzova, V. Burmistrov, I. Gashkin, T. Khorosheva, and E. Nikolaev, "Experimental spherical retroreflector on board the Meteor-3M satellite," in Proceedings of the Twelfth International Workshop on Laser Ranging, Malera, Italy (2000), pp. 1-5.

Vasiliev, J. D.

V. Burmistrov, N. Parkhomenko, Y. Roy, V. Shargorodsky, J. D. Vasiliev, S. Habib, V. Glotov, and N. Sokolov, "Spherical retroreflectors with an extremely small target error: International experiment in space," in Proceedings of 13th International Workshop on Laser Ranging (Washington D.C., 2002), pp. 1-6.
[PubMed]

Weik, M. H.

M. H. Weik, Communications Standard Dictionary (Chapman & Hall, 1997).
[CrossRef]

Welford, W. T.

W. T. Welford, Aberrations of the Symmetrical Optical System (Academic, 1974).

Willats, T.

V. Handerek, H. McArdle, T. Willats, N. Psaila, and L. Laycock, "Experimental retroreflectors with very wide field of view for free-space optical communications," in Proceedings of 2nd Electro Magnetic Remote Sensing Defense Technology Centre Technical Conference (Edinburgh, 2005), pp. 1-6.
[PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).

Wolfe, W. L.

W. L. Wolfe and G. W. Zissis, Infrared Handbook, revised ed. (Office of Naval Research, Washington D.C., 1985).

Wyman, P. W.

Yang, B.

B. Yang and H. Friedman, Ray-tracing Studies for a Whole-Viewing Angle Retroreflector (Argonne National Laboratory, Argonne, Illinois, 1999).

Yin, R.

T. Takatsuji, M. Goto, S. Osawa, R. Yin, and T. Kurosawa, "Whole viewing angle cat's eye retroreflector as a target for laser trackers," Meas. Sci. Technol. 10, N87-N90 (1999).
[CrossRef]

Yongbing, L.

L. Yongbing, Z. Guoxiong, and L. Zhen, "An improved cat's-eye retroreflector used in laser tracking interferometer system," Meas. Sci. Technol. 14, N36-N40 (2003).
[CrossRef]

Zhen, L.

L. Yongbing, Z. Guoxiong, and L. Zhen, "An improved cat's-eye retroreflector used in laser tracking interferometer system," Meas. Sci. Technol. 14, N36-N40 (2003).
[CrossRef]

Zissis, G. W.

W. L. Wolfe and G. W. Zissis, Infrared Handbook, revised ed. (Office of Naval Research, Washington D.C., 1985).

Appl. Opt. (2)

Meas. Sci. Technol. (2)

T. Takatsuji, M. Goto, S. Osawa, R. Yin, and T. Kurosawa, "Whole viewing angle cat's eye retroreflector as a target for laser trackers," Meas. Sci. Technol. 10, N87-N90 (1999).
[CrossRef]

L. Yongbing, Z. Guoxiong, and L. Zhen, "An improved cat's-eye retroreflector used in laser tracking interferometer system," Meas. Sci. Technol. 14, N36-N40 (2003).
[CrossRef]

Opt. Eng. (2)

M. L. Biermann, W. S. Rabinovich, R. Mahon, and G. C. Gilbreath, "Design and analysis of a diffraction-limited cat's-eye retroreflector," Opt. Eng. 41, 1655-1660 (2002).
[CrossRef]

N. J. Abel, M. A. Marciniak, M. B. Haeri, and S. C. Cain, "Wave-optics modeling of aberration effects in optical cross section measurements," Opt. Eng. 44, 084302.1-084302.8 (2005).
[CrossRef]

Proc. SPIE (2)

V. A. Handerek and L. C. Laycock, "Feasibility of retroreflective free-space optical communication using retroreflectors with very wide field of view," in Advanced Free-Space Optical Communications Techniques and Technologies, M. Ross and A. M. Scott, eds., Proc. SPIE 5614, 1-9 (2004).
[CrossRef]

A. Ames, K. Meyer, and D. Medina, "Experimental measurements of radiometric LADAR calibration targets," in Laser Source and System Technology for Defense and Security, G. L. Wood, ed., Proc. SPIE 5792, 120-128 (2005).
[CrossRef]

Trans. Inst. Meas. Control (1)

R. B. Nilson and X. J. Lu, "Optimum design of spherical retroreflectors with refractive indices close to 2.0," Trans. Inst. Meas. Control (London) [0142-3312] 18, 212-215 (1996).
[CrossRef]

Other (12)

B. Yang and H. Friedman, Ray-tracing Studies for a Whole-Viewing Angle Retroreflector (Argonne National Laboratory, Argonne, Illinois, 1999).

V. Handerek, H. McArdle, T. Willats, N. Psaila, and L. Laycock, "Experimental retroreflectors with very wide field of view for free-space optical communications," in Proceedings of 2nd Electro Magnetic Remote Sensing Defense Technology Centre Technical Conference (Edinburgh, 2005), pp. 1-6.
[PubMed]

V. Shargorodsky, V. Vasilev, N. Soyuzova, V. Burmistrov, I. Gashkin, T. Khorosheva, and E. Nikolaev, "Experimental spherical retroreflector on board the Meteor-3M satellite," in Proceedings of the Twelfth International Workshop on Laser Ranging, Malera, Italy (2000), pp. 1-5.

V. Burmistrov, N. Parkhomenko, Y. Roy, V. Shargorodsky, J. D. Vasiliev, S. Habib, V. Glotov, and N. Sokolov, "Spherical retroreflectors with an extremely small target error: International experiment in space," in Proceedings of 13th International Workshop on Laser Ranging (Washington D.C., 2002), pp. 1-6.
[PubMed]

P. Z. Peebles, Radar Principles (Wiley, 1998).

M. H. Weik, Communications Standard Dictionary (Chapman & Hall, 1997).
[CrossRef]

W. L. Wolfe and G. W. Zissis, Infrared Handbook, revised ed. (Office of Naval Research, Washington D.C., 1985).

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).

http://www.chgsouthampton.com.

W. T. Welford, Aberrations of the Symmetrical Optical System (Academic, 1974).

See GlassBank at www.ifmo.ru.

E. Langenbach, "Melt-dependent refractive index interpolation for optical glasses," in Design and Engineering of Optical Systems II, F. Merkle, ed., Proc. SPIE 3737, 57-64 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Basic spherical reflector.

Fig. 2
Fig. 2

r 2 / r 1 versus n 1 for primary focus.

Fig. 3
Fig. 3

n 1 versus n 2 for zero third-order aberration.

Fig. 4
Fig. 4

Construction of composite reflector.

Fig. 5
Fig. 5

(Color online) Part-assembled device.

Fig. 6
Fig. 6

Ray aberration with radial distance.

Fig. 7
Fig. 7

Results from field test.

Fig. 8
Fig. 8

(Color online) Reference reflector assembly.

Tables (2)

Tables Icon

Table 1 Example Pairs of Optical Materials

Tables Icon

Table 2 Dimensions of Reflector Elements

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

CS = π 3 4 λ 2 d 4 [ m 2 ] ,
CS = Lim d D π 3 4 λ 2 d 4 S ( d ) [ m 2 ] ,
2 n 1 + 2 r 1 r 2 n 2 2 r 1 r 2 n 1 = 1 .
S 3 = 1 16 r 1 3 n 1 + 1 16 r 1 3 + 1 8 r 2 3 n 1 n 2 1 8 n 2 2 r 2 3 .
2 n 1 + 2 r 1 r 2 n 2 2 r 1 n 1 r 2 + 2 r 1 r 3 n 3 2 r 1 r 3 n 2 = 1 .
2 / r 3 / r 2 2 / n 2 2 / n 1 + 1 / r 3 / r 2 / n 2 2 / r 1 2 / r 3 2 / n 2 2 / n 3 / r 2 + 1 / r 3 2 / n 2 / n 3 / r 1 1 / r 3 / r 2 / n 2 2 / r 1 / n 1 1 / r 3 2 / r 2 / n 1 / n 3 2 + 1 / r 3 / r 2 2 / n 1 2 / n 3 1 / r 3 / r 2 / n 1 2 / n 3 / r 1 + 1 / r 3 / r 2 / n 1 / n 3 / r 1 1 / r 3 / r 2 2 / n 1 2 / n 2 + 1 / r 3 / r 2 / n 1 2 / n 2 / r 1 1 / r 3 / r 2 / n 1 / n 2 / r 1 + 1 / 2 / r 3 2 / r 1 / n 1 / n 3 2 + 1 / 4 / r 3 / r 1 2 / n 1 2 / n 3 1 / 2 / r 3 / r 1 2 / n 1 / n 3 1 / 4 / r 3 / r 1 2 / n 1 2 / n 2 + 1/2/ r 3 / r 1 2 / n 1 / n 2 1 / r 2 2 / n 1 2 / n 2 / r 1 1 / r 3 2 / n 1 / n 2 2 / r 2 + 2 / r 3 2 / n 2 / n 3 / r 2 / n 1 1 / 4 / r 2 3 / n 1 3 1 / r 3 2 / n 2 / n 3 / r 1 / n 1 + 1 / r 3 2 / r 2 / n 2 / n 3 2 + 1 / r 3 / r 2 2 / n 2 2 / n 3 2 / r 3 / r 2 2 / n 2 / n 3 / n 1
+ 1 / r 3 / r 2 / n 2 / n 3 / r 1 / n 1 1 / r 3 / r 2 / n 2 / n 3 / r 1 + 1 / 4 / r 2 3 / n 2 3 1 / r 2 3 / n 1 / n 2 2 + 1 / r 2 3 / n 1 2 / n 2 + 1 / 2 / r 2 2 / n 1 3 / r 1 1 / 2 / r 2 2 / n 1 2 / r 1 1 / 4 / r 2 / r 1 2 / n 1 3 + 1 / 2 / r 2 / r 1 2 / n 1 2 + 1 / r 2 2 / n 1 / n 2 / r 1 + 1 / 2 / r 2 2 / r 1 / n 1 / n 2 2 + 1 / 4 / r 2 / r 1 2 / n 1 2 / n 2 1 / 2 / r 2 2 / r 1 2 / n 1 / n 2 1 / 2 / r 2 2 / r 1 / n 2 2 + 1 / 4 / r 2 / r 1 2 / n 2 1 / 4 / r 2 / r 1 2 / n 1 1 / 4 / r 3 3 / n 2 3 + 1 / 4 / r 3 3 / n 3 3 + 1 / 2 / r 3 2 / r 1 / n 1 / n 2 2 + 1 / r 3 2 / n 2 3 / r 2 1 / r 3 3 / n 2 / n 3 2 + 1 / r 3 3 / n 2 2 / n 3 1 / r 3 / r 2 2 / n 2 3 1 / 2 / r 3 3 / r 1 / n 3 2 + 1 / 4 / r 3 / r 1 2 / n 3 1 / 4 / r 3 / r 1 2 / n 2 1 / 2 / r 3 2 / r 1 / n 2 2 + 1 / 8 / r 1 3 / n 1 1 / 8 / r 1 3 / n 1 2
CS = 0.1 π 3 4 λ 2 d 4 .

Metrics