Abstract

The detection characteristics for photoacoustic imaging of microcracks in silicon wafers were theoretically and quantitatively investigated using a numerical simulation. The simulation is based on a one-dimensional multilayered thermal diffusion model coupled with the thermal-wave impedance of each layer, the layer structures of which are constructed along the wafer surface and are variable according to the scanning position of the point heat source. As the modulation frequency was reduced, the spatial resolution of the temperature amplitude profile at the cracks decreased, showing good agreement with the experimentally obtained photoacoustic amplitude images. At a modulation frequency of 200 kHz, for cracks with narrow air gaps of up to 20nm, which is much smaller than both the beam spot size of 1.5μm and the thermal diffusion length of 12μm, the temperature amplitude is twice that of regions without cracks, and the temperature contrast increased with an increase in the modulation frequency. These calculation results suggest the effectiveness of using a high modulation frequency, making it possible to detect microcracks of the order of 10 nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription