Abstract

We present what we believe to be a new application of scanning holographic microscopy to superresolution. Spatial resolution exceeding the Rayleigh limit of the objective is obtained by digital coherent addition of the reconstructions of several off-axis Fresnel holograms. Superresolution by holographic superposition and synthetic aperture has a long history, which is briefly reviewed. The method is demonstrated experimentally by combining three off-axis holograms of fluorescent beads showing a transverse resolution gain of nearly a factor of 2.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Toraldo di Francia, "Super-gain antennas and optical resolving power," Nuovo Cimento , Suppl. 9, 426-438 (1952).
    [CrossRef]
  2. G. Toraldo di Francia, "Resolving power and information," J. Opt. Soc. Am. 45, 497-501 (1955).
    [CrossRef]
  3. G. Toraldo di Francia, "Degrees of freedom of an image," J. Opt. Soc. Am. 59, 799-804 (1969).
    [CrossRef] [PubMed]
  4. W. Lukosz, "Optical systems with resolving power exceeding the classical limits," J. Opt. Soc. Am. 56, 1463-1472 (1966).
    [CrossRef]
  5. W. Lukosz, "Optical systems with resolving power exceeding the classical limits, II," J. Opt. Soc. Am. 57, 932-941 (1967).
    [CrossRef]
  6. I. J. Cox and J. R. Sheppard, "Information capacity and resolution in an optical system," J. Opt. Soc. Am. A 3, 1152-1158 (1986).
    [CrossRef]
  7. D. Mendlovic and A. W. Lohmann, "Space-bandwidth product adaptation and its application to superresolution: fundamentals," J. Opt. Soc. Am. A 4, 558-562 (1997).
    [CrossRef]
  8. D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, "Space-bandwidth product adaptation and its application to superresolution: examples," J. Opt. Soc. Am. A 4, 563-567 (1997).
    [CrossRef]
  9. Z. Zalevsky, D. Mendlovics, and A. W. Lohmann, "Optical systems with improved resolving power," in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 40, pp. 271-341.
    [CrossRef]
  10. T. Leizerson, S. G. Lipson, and V. Sarafi, "Superresolution in far-field imaging," J. Opt. Soc. Am. A 19, 436-443 (2002).
    [CrossRef]
  11. M. A. Grimm and A. W. Lohmann, "Superresolution image for one-dimensional objects," J. Opt. Soc. Am. 56, 1151-1156 (1966).
    [CrossRef]
  12. D. Mendlovics, A. W. Lohmann, N. Konforti, I. Kiryuschev, and Z. Zalevsky, "One-dimensional superresolution optical system for temporally restricted objects," Appl. Opt. 36, 2353-2359 (1997).
    [CrossRef]
  13. A. Shemer, D. Mendlovics, Z. Zalevsky, J. Garcia, and P. Garcia-Martinez, "Superresolving optical system with time multiplexing and computer decoding," Appl. Opt. 38, 7245-7251 (1999).
    [CrossRef]
  14. A. W. Lohmann and D. P. Paris, "Superresolution for nonbirefringent objects," Appl. Opt. 3, 1037-1043 (1964).
    [CrossRef]
  15. E. N. Leith, D. Angell, and C. P. Kuei, "Superresolution by incoherent to coherent conversion," J. Opt. Soc. Am. A 4, 1050-1054 (1987).
    [CrossRef]
  16. R. W. Gerchberg, "Super-resolution through error energy reduction," Opt. Acta 21, 709-720 (1974).
    [CrossRef]
  17. M. Bertero and C. De Mol, "Superresolution by data inversion," in Progress in Optics, E. Wolf, ed. (Elsevier, 1996), Vol. 36, pp. 129-178.
    [CrossRef]
  18. B. Colicchio, O. Haeberle, C. Xu, A. Dieterlen, and G. Jung, "Improvement of the LLS and MAP deconvolution algorithms by automatic determination of optimal regularization parameters and prefiltering of original data," Opt. Commun. 244, 37-49 (2005).
    [CrossRef]
  19. P. C. Sun and E. N. Leith, "Superresolution by spatial-temporal encoding methods," Appl. Opt. 31, 4857-4862 (1992).
    [CrossRef] [PubMed]
  20. M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000).
    [CrossRef] [PubMed]
  21. M. A. A. Neil, R. Juskaitis, and T. Wilson, "Method of obtaining optical sectioning by using structured light in a conventional microscope," Opt. Lett. 22, 1905-1907 (1997).
    [CrossRef]
  22. J. T. Frohn, H. F. Knapp, and A. Stemmer, "Three-dimensional resolution enhancement in fluorescence microscopy by harmonic excitation," Opt. Lett. 26, 828-830 (2001).
    [CrossRef]
  23. J. Garcia, Z. Zalevsky, and D. Fixler, "Synthetic aperture superresolution by speckle pattern projection," Opt. Express 13, 6073-6078 (2005).
    [CrossRef] [PubMed]
  24. O. Haeberle and B. Simon, "Improving the lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams," Opt. Commun. 259, 400-408 (2006).
    [CrossRef]
  25. M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, "Three-dimensional superresolution by annular binary filters," Opt. Commun 165, 267-278 (1999).
    [CrossRef]
  26. M. Gu, T. Tannous, and C. R. J. Sheppard, "Improved axial resolution in focal fluorescence microscopy with annular pupils," Opt. Commun. 110, 533-539 (1994).
    [CrossRef]
  27. M. Martinez-Corral, M. T. Caballero, E. H. K. Stelzer, and J. Swoger, "Tailoring the axial shape of the point spread function using the Toraldo concept," Opt. Express 10, 98-103 (2002).
    [PubMed]
  28. J. W. Goodman and R. W. Lawrence, "Digital image information from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
    [CrossRef]
  29. T. Sato, M. Ueda, and G. Yamagishi, "Superresolution microscope using electrical superposition of holograms," Appl. Opt. 13, 406-408 (1973).
    [CrossRef]
  30. M. Ueda, T. Sato, and M. Kondo, "Superresolution by multiple superposition of images holograms having different carrier frequencies," Opt. Acta 20, 403-410 (1973).
    [CrossRef]
  31. X. Chen and S. R. Brueck, "Imaging interferometric lithography approaching the resolution limit of the optics," Opt. Lett. 24, 124-126 (1999).
    [CrossRef]
  32. F. Le Clerc, M. Gross, and L. Collot, "Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography," Opt. Lett. 26, 1550-1552 (2001).
    [CrossRef]
  33. J. R. Hassig, "Digital off-axis holography with synthetic aperture," Opt. Lett. 27, 2179-2181 (2002).
    [CrossRef]
  34. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, "Imaging interferometric microscopy," Opt. Lett. 28, 1424-1426 (2003).
    [CrossRef] [PubMed]
  35. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, "Single step superresolution by interferometric imaging," Opt. Express 12, 2589-2596 (2004).
    [CrossRef] [PubMed]
  36. V. Mico, Z. Zalevsky, and J. Garcia, "Superesolution optical system by common path interferometry," Opt. Express 14, 5168-5177 (2006).
    [CrossRef] [PubMed]
  37. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, "Superresolved imaging in digital holography by superposition of tilted wavefronts," Appl. Opt. 45, 822-828 (2006).
    [CrossRef] [PubMed]
  38. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase contrast imaging," Opt. Lett. 24, 291-293 (1999).
    [CrossRef]
  39. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  40. G. Indebetouw, A. El Maghnouji, and R. Foster, "Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus," J. Opt. Soc. Am. A 22, 892-898 (2005).
    [CrossRef]
  41. G. Indebetouw and W. Zhong, "Scanning holographic microscopy of three-dimensional fluorescent specimens," J. Opt. Soc. Am. A 23, 1699-1707 (2006).
    [CrossRef]
  42. G. Indebetouw, Y. Tada, and L. Leacock, "Quantitative phase imaging with scanning holographic microscopy:experimental assessment," Biomed. Eng. Online 5, doi: 10.1186/1475-925x-5-63 (2006).
  43. G. Indebetouw, W. Zhong, and D. Chamberlin-Long, "Point-spread function synthesis in scanning holographic microscopy," J. Opt. Soc. Am. A 23, 1708-1717 (2006).
    [CrossRef]
  44. G. Indebetouw, "A posteriori quasi-sectioning of the three-dimensional reconstructions of scanning holographic microscopy," J. Opt. Soc. Am. A 23, 2657-2661 (2006).
    [CrossRef]
  45. G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, "Imaging properties of scanning holographic microscopy," J. Opt. Soc. Am. A 17, 380-390 (2000).
    [CrossRef]
  46. J. Rosen, G. Indebetouw, and G. Brooker, "Homodyne scanning holography," Opt. Express 14, 4280-4285 (2006).
    [CrossRef]
  47. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  48. I. Yamaguchi, J.-I. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and application to microscopy," Appl. Opt. 40, 6177-6186 (2001).
    [CrossRef]
  49. J. Swoger, M. Martinez-Corral, J. Huysken, and E. H. K. Stelzer, "Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy," J. Opt. Soc. Am. A 19, 1910-1918 (2002).
    [CrossRef]
  50. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1966).
  51. C. W. McCutchen, "Generalized aperture and three-dimensional diffraction images," J. Opt. Soc. Am. 54, 240-244 (1964).
    [CrossRef]
  52. M. Gu, Advance in Optical Imaging Theory (Springer, 2000).

2006 (7)

2005 (3)

2004 (1)

2003 (1)

2002 (4)

2001 (3)

2000 (2)

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000).
[CrossRef] [PubMed]

G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, "Imaging properties of scanning holographic microscopy," J. Opt. Soc. Am. A 17, 380-390 (2000).
[CrossRef]

1999 (5)

1997 (5)

1994 (1)

M. Gu, T. Tannous, and C. R. J. Sheppard, "Improved axial resolution in focal fluorescence microscopy with annular pupils," Opt. Commun. 110, 533-539 (1994).
[CrossRef]

1992 (1)

1987 (1)

1986 (1)

1974 (1)

R. W. Gerchberg, "Super-resolution through error energy reduction," Opt. Acta 21, 709-720 (1974).
[CrossRef]

1973 (2)

T. Sato, M. Ueda, and G. Yamagishi, "Superresolution microscope using electrical superposition of holograms," Appl. Opt. 13, 406-408 (1973).
[CrossRef]

M. Ueda, T. Sato, and M. Kondo, "Superresolution by multiple superposition of images holograms having different carrier frequencies," Opt. Acta 20, 403-410 (1973).
[CrossRef]

1969 (1)

1967 (2)

W. Lukosz, "Optical systems with resolving power exceeding the classical limits, II," J. Opt. Soc. Am. 57, 932-941 (1967).
[CrossRef]

J. W. Goodman and R. W. Lawrence, "Digital image information from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

1966 (2)

1964 (2)

1955 (1)

1952 (1)

G. Toraldo di Francia, "Super-gain antennas and optical resolving power," Nuovo Cimento , Suppl. 9, 426-438 (1952).
[CrossRef]

Andres, P.

M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, "Three-dimensional superresolution by annular binary filters," Opt. Commun 165, 267-278 (1999).
[CrossRef]

Angell, D.

Bertero, M.

M. Bertero and C. De Mol, "Superresolution by data inversion," in Progress in Optics, E. Wolf, ed. (Elsevier, 1996), Vol. 36, pp. 129-178.
[CrossRef]

Bevilacqua, F.

Brooker, G.

Brueck, S. R.

Brueck, S. R. J.

Caballero, M. T.

Chamberlin-Long, D.

Chen, X.

Colicchio, B.

B. Colicchio, O. Haeberle, C. Xu, A. Dieterlen, and G. Jung, "Improvement of the LLS and MAP deconvolution algorithms by automatic determination of optimal regularization parameters and prefiltering of original data," Opt. Commun. 244, 37-49 (2005).
[CrossRef]

Collot, L.

Cox, I. J.

Cuche, E.

De Mol, C.

M. Bertero and C. De Mol, "Superresolution by data inversion," in Progress in Optics, E. Wolf, ed. (Elsevier, 1996), Vol. 36, pp. 129-178.
[CrossRef]

Depeursinge, C.

Dieterlen, A.

B. Colicchio, O. Haeberle, C. Xu, A. Dieterlen, and G. Jung, "Improvement of the LLS and MAP deconvolution algorithms by automatic determination of optimal regularization parameters and prefiltering of original data," Opt. Commun. 244, 37-49 (2005).
[CrossRef]

El Maghnouji, A.

Fixler, D.

Foster, R.

Frohn, J. T.

Garcia, J.

Garcia-Martinez, P.

Gerchberg, R. W.

R. W. Gerchberg, "Super-resolution through error energy reduction," Opt. Acta 21, 709-720 (1974).
[CrossRef]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, "Digital image information from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1966).

Grimm, M. A.

Gross, M.

Gu, M.

M. Gu, T. Tannous, and C. R. J. Sheppard, "Improved axial resolution in focal fluorescence microscopy with annular pupils," Opt. Commun. 110, 533-539 (1994).
[CrossRef]

M. Gu, Advance in Optical Imaging Theory (Springer, 2000).

Gustafsson, M. G. L.

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000).
[CrossRef] [PubMed]

Haeberle, O.

O. Haeberle and B. Simon, "Improving the lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams," Opt. Commun. 259, 400-408 (2006).
[CrossRef]

B. Colicchio, O. Haeberle, C. Xu, A. Dieterlen, and G. Jung, "Improvement of the LLS and MAP deconvolution algorithms by automatic determination of optimal regularization parameters and prefiltering of original data," Opt. Commun. 244, 37-49 (2005).
[CrossRef]

Hassig, J. R.

Huysken, J.

Indebetouw, G.

Jung, G.

B. Colicchio, O. Haeberle, C. Xu, A. Dieterlen, and G. Jung, "Improvement of the LLS and MAP deconvolution algorithms by automatic determination of optimal regularization parameters and prefiltering of original data," Opt. Commun. 244, 37-49 (2005).
[CrossRef]

Juskaitis, R.

Kato, J.-I.

Kim, T.

Kiryuschev, I.

Klysubun, P.

Knapp, H. F.

Kondo, M.

M. Ueda, T. Sato, and M. Kondo, "Superresolution by multiple superposition of images holograms having different carrier frequencies," Opt. Acta 20, 403-410 (1973).
[CrossRef]

Konforti, N.

Kowalczyk, M.

M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, "Three-dimensional superresolution by annular binary filters," Opt. Commun 165, 267-278 (1999).
[CrossRef]

Kuei, C. P.

Kuznetsova, Y.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, "Digital image information from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Le Clerc, F.

Leacock, L.

G. Indebetouw, Y. Tada, and L. Leacock, "Quantitative phase imaging with scanning holographic microscopy:experimental assessment," Biomed. Eng. Online 5, doi: 10.1186/1475-925x-5-63 (2006).

Leith, E. N.

Leizerson, T.

Lipson, S. G.

Lohmann, A. W.

Lukosz, W.

Marquet, P.

Martinez-Corral, M.

McCutchen, C. W.

Mendlovic, D.

D. Mendlovic and A. W. Lohmann, "Space-bandwidth product adaptation and its application to superresolution: fundamentals," J. Opt. Soc. Am. A 4, 558-562 (1997).
[CrossRef]

D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, "Space-bandwidth product adaptation and its application to superresolution: examples," J. Opt. Soc. Am. A 4, 563-567 (1997).
[CrossRef]

Mendlovics, D.

Mico, V.

Mizuno, J.

Neil, M. A. A.

Ohta, S.

Paris, D. P.

Poon, T.-C.

Rosen, J.

Sarafi, V.

Sato, T.

T. Sato, M. Ueda, and G. Yamagishi, "Superresolution microscope using electrical superposition of holograms," Appl. Opt. 13, 406-408 (1973).
[CrossRef]

M. Ueda, T. Sato, and M. Kondo, "Superresolution by multiple superposition of images holograms having different carrier frequencies," Opt. Acta 20, 403-410 (1973).
[CrossRef]

Schwarz, C. J.

Shemer, A.

Sheppard, C. R. J.

M. Gu, T. Tannous, and C. R. J. Sheppard, "Improved axial resolution in focal fluorescence microscopy with annular pupils," Opt. Commun. 110, 533-539 (1994).
[CrossRef]

Sheppard, J. R.

Simon, B.

O. Haeberle and B. Simon, "Improving the lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams," Opt. Commun. 259, 400-408 (2006).
[CrossRef]

Stelzer, E. H. K.

Stemmer, A.

Sun, P. C.

Swoger, J.

Tada, Y.

G. Indebetouw, Y. Tada, and L. Leacock, "Quantitative phase imaging with scanning holographic microscopy:experimental assessment," Biomed. Eng. Online 5, doi: 10.1186/1475-925x-5-63 (2006).

Tannous, T.

M. Gu, T. Tannous, and C. R. J. Sheppard, "Improved axial resolution in focal fluorescence microscopy with annular pupils," Opt. Commun. 110, 533-539 (1994).
[CrossRef]

Toraldo di Francia, G.

Ueda, M.

T. Sato, M. Ueda, and G. Yamagishi, "Superresolution microscope using electrical superposition of holograms," Appl. Opt. 13, 406-408 (1973).
[CrossRef]

M. Ueda, T. Sato, and M. Kondo, "Superresolution by multiple superposition of images holograms having different carrier frequencies," Opt. Acta 20, 403-410 (1973).
[CrossRef]

Wilson, T.

Xu, C.

B. Colicchio, O. Haeberle, C. Xu, A. Dieterlen, and G. Jung, "Improvement of the LLS and MAP deconvolution algorithms by automatic determination of optimal regularization parameters and prefiltering of original data," Opt. Commun. 244, 37-49 (2005).
[CrossRef]

Yamagishi, G.

Yamaguchi, I.

Zalevsky, Z.

Zapata-Rodriguez, C. J.

M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, "Three-dimensional superresolution by annular binary filters," Opt. Commun 165, 267-278 (1999).
[CrossRef]

Zhang, T.

Zhong, W.

Appl. Opt. (8)

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, "Digital image information from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

J. Microsc. (1)

M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (11)

J. Swoger, M. Martinez-Corral, J. Huysken, and E. H. K. Stelzer, "Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy," J. Opt. Soc. Am. A 19, 1910-1918 (2002).
[CrossRef]

G. Indebetouw, A. El Maghnouji, and R. Foster, "Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus," J. Opt. Soc. Am. A 22, 892-898 (2005).
[CrossRef]

G. Indebetouw and W. Zhong, "Scanning holographic microscopy of three-dimensional fluorescent specimens," J. Opt. Soc. Am. A 23, 1699-1707 (2006).
[CrossRef]

G. Indebetouw, W. Zhong, and D. Chamberlin-Long, "Point-spread function synthesis in scanning holographic microscopy," J. Opt. Soc. Am. A 23, 1708-1717 (2006).
[CrossRef]

G. Indebetouw, "A posteriori quasi-sectioning of the three-dimensional reconstructions of scanning holographic microscopy," J. Opt. Soc. Am. A 23, 2657-2661 (2006).
[CrossRef]

G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, "Imaging properties of scanning holographic microscopy," J. Opt. Soc. Am. A 17, 380-390 (2000).
[CrossRef]

I. J. Cox and J. R. Sheppard, "Information capacity and resolution in an optical system," J. Opt. Soc. Am. A 3, 1152-1158 (1986).
[CrossRef]

D. Mendlovic and A. W. Lohmann, "Space-bandwidth product adaptation and its application to superresolution: fundamentals," J. Opt. Soc. Am. A 4, 558-562 (1997).
[CrossRef]

D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, "Space-bandwidth product adaptation and its application to superresolution: examples," J. Opt. Soc. Am. A 4, 563-567 (1997).
[CrossRef]

T. Leizerson, S. G. Lipson, and V. Sarafi, "Superresolution in far-field imaging," J. Opt. Soc. Am. A 19, 436-443 (2002).
[CrossRef]

E. N. Leith, D. Angell, and C. P. Kuei, "Superresolution by incoherent to coherent conversion," J. Opt. Soc. Am. A 4, 1050-1054 (1987).
[CrossRef]

Nuovo Cimento (1)

G. Toraldo di Francia, "Super-gain antennas and optical resolving power," Nuovo Cimento , Suppl. 9, 426-438 (1952).
[CrossRef]

Opt. Acta (2)

R. W. Gerchberg, "Super-resolution through error energy reduction," Opt. Acta 21, 709-720 (1974).
[CrossRef]

M. Ueda, T. Sato, and M. Kondo, "Superresolution by multiple superposition of images holograms having different carrier frequencies," Opt. Acta 20, 403-410 (1973).
[CrossRef]

Opt. Commun (1)

M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, "Three-dimensional superresolution by annular binary filters," Opt. Commun 165, 267-278 (1999).
[CrossRef]

Opt. Commun. (3)

M. Gu, T. Tannous, and C. R. J. Sheppard, "Improved axial resolution in focal fluorescence microscopy with annular pupils," Opt. Commun. 110, 533-539 (1994).
[CrossRef]

O. Haeberle and B. Simon, "Improving the lateral resolution in confocal fluorescence microscopy using laterally interfering excitation beams," Opt. Commun. 259, 400-408 (2006).
[CrossRef]

B. Colicchio, O. Haeberle, C. Xu, A. Dieterlen, and G. Jung, "Improvement of the LLS and MAP deconvolution algorithms by automatic determination of optimal regularization parameters and prefiltering of original data," Opt. Commun. 244, 37-49 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (8)

Other (5)

M. Bertero and C. De Mol, "Superresolution by data inversion," in Progress in Optics, E. Wolf, ed. (Elsevier, 1996), Vol. 36, pp. 129-178.
[CrossRef]

Z. Zalevsky, D. Mendlovics, and A. W. Lohmann, "Optical systems with improved resolving power," in Progress in Optics, E. Wolf, ed. (Elsevier, 2000), Vol. 40, pp. 271-341.
[CrossRef]

G. Indebetouw, Y. Tada, and L. Leacock, "Quantitative phase imaging with scanning holographic microscopy:experimental assessment," Biomed. Eng. Online 5, doi: 10.1186/1475-925x-5-63 (2006).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1966).

M. Gu, Advance in Optical Imaging Theory (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of an off-axis scanning holographic microscope. M, mirrors; BS, beam splitters; DBS, dichroic beam splitter; EOM, electro-optic phase modulator. L 1 , 2 are achromat doublet lenses, 16   cm focal length, L 3 is a collecting lens, 1 cm focal length. The wedge on a rotating stage is used to create off-axis Fresnel patterns on the specimen.

Fig. 2
Fig. 2

(Color online) (a) Wrapped phase of the on-line hologram of a 0.5 μ m diameter pinhole. The scale bar is 10 μ m . The phase distribution has a radius 18 μ m , a Fresnel number 12 , and a radius of curvature 50 μ m . (b) Amplitude of the reconstruction of the 0.5 μ m pinhole using the on-line hologram. FWHM 1.0 μ m .

Fig. 3
Fig. 3

(Color online) (a) Wrapped phase of three off-axis holograms of the 0.5 μ m pinhole illustrating the idea of pupil synthesis. The scale bar is 10 μ m . (b) Amplitude of the reconstruction of the 0.5 μ m pinhole using the composite off-axis holograms. FWHM 0.7 μ m .

Fig. 4
Fig. 4

(Color online) (a) Reconstruction of the on-axis hologram of a collection of 1.0 μ m fluorescent beads (excitation∕emission wavelengths = 532 nm / 600   nm ) at the best focus distance of 47.5 μ m from the focal plane of the objective. The scale bar is 5 μ m . Bead clusters are just barely resolved. (b) Same reconstruction at a focus distance of 49 μ m . The two planes are within the Rayleigh range of the on-axis scanning FZP.

Fig. 5
Fig. 5

(Color online) Coherent sum of the complex amplitudes of the reconstructions of three off-axis holograms recorded with off sets 120° apart. The scale bar is 5 μ m . (a) Best focus at 47.5 μ m from the focal plane of the objective. (b) Same reconstruction at a focus distance of 49 μ m . The distance between the two planes is close to the Rayleigh range of the synthesized FZP, and different bead clusters are focused in different planes.

Fig. 6
Fig. 6

(a) Absolute value and (b) wrapped phase of the reconstruction of a 0.5 μ m diameter pinhole from the on-axis hologram. The phase profile is typical of an Airy pattern with a central lobe diameter 1.5 μ m . The scale bar is 1 μ m .

Fig. 7
Fig. 7

(a) Absolute value and (b) wrapped phase of the coherent sum of the reconstructions of a 0.5 μ m diameter pinhole from the three off-axis holograms. The threefold symmetry of the destructive interference results in a narrower amplitude distribution (a), and a central lobe diameter 1.0 μ m . The scale bar is 1 μ m .

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P ˜ 1 ( ρ ) = exp ( i π λ z 0 ρ 2 ) Disk ( ρ / ρ M A X ) ,
P ˜ 2 j ( ρ ) = δ ( ρ ρ 0 n ^ j ) .
S ˜ j ( ρ , z ) = P ˜ 1 ( ρ , z ) P ˜ 2 j ( ρ , z ) = exp { i π λ [ z 0 ρ 0 2 + ( z 0 z ) ( ρ 2 2 ρ · ρ 0 n ^ j ) ] } × D i s k ( | ρ ρ 0 n ^ j | / ρ M A X ) ,
P ˜ 1 , 2 ( ρ , z ) = P ˜ 1 , 2 ( ρ ) exp ( i 2 π z λ 2 ρ 2 ) ,
P ˜ 1 ( ρ , z ) = exp ( i 2 π z / λ ) exp [ i π λ ( z 0 z ) ρ 2 ] × D i s k ( ρ / ρ M A X ) ,
P ˜ 2 j ( ρ , z ) = exp ( i 2 π z / λ ) exp ( i π λ z ρ 0 2 ) δ ( ρ ρ 0 n ^ j ) .
H ˜ O j = d z I ˜ ( ρ , z ) S ˜ j ( ρ , z ) ,
H ˜ R j ( ρ ) = exp [ i π λ z 0 ( | ρ ρ 0 n ^ j | 2 ) ] × D i s k ( | ρ ρ 0 n ^ j | / ρ M A X ) ,
P ˜ j ( ρ , z R ) = exp [ i π λ z R ( ρ 2 2 ρ · ρ 0 n ^ j ) ] .
R ˜ j ( ρ , z R ) = H ˜ O j ( ρ ) [ H ˜ R j ( ρ ) P ˜ j ( ρ , z R ) ] * = d z I ˜ ( ρ , z ) exp [ i π λ ( z R z ) ( ρ 2 2 ρ · ρ 0 n ^ j ) ] × D i s k ( | ρ ρ 0 n ^ j | / ρ M A X ) ,

Metrics