Abstract

Wereporta method that enables dynamic switching of the pulse-to-pulse linear polarization orientation of a high-pulse-rate laser. The implications for laser micromachining, where polarization direction can be important, are also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D. 32, 1455-1461 (1999).
    [CrossRef]
  2. S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
    [CrossRef]
  3. N. Barsch, K. Korber, A. Ostendorf, and K. H. Tonshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).
  4. A. V. Nesterov and V. G. Niziev, "Laser beams with axially symmetric polarization," J. Phys. D. 33, 1817-1822 (2000).
    [CrossRef]
  5. M. W. Sasnett and R. J. Saunders, "Method and apparatus for laser scribing and cutting," U.S. patent 4,336,439 (1982).
  6. X. Zhu, A. Yu. Naumov, D. M. Villeneuve, and P. B. Corkum, "Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses," Appl. Phys. A 69, S367-S371 (1999).
    [CrossRef]
  7. K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
    [CrossRef]
  8. A. V. Zaitsev, O. B. Kovalev, A. M. Orishich, and V. M. Fomin, "Numerical analysis of the effect of the TEM00 radiation mode polarization on the cut shape in laser cutting of thick metal sheets," Quantum Electron. 35, 200-204 (2005).
    [CrossRef]
  9. A. Borowiec and H. K. Haugen, "Femtosecond laser micromachining of grooves in indium phosphide," Appl. Phys. A 79, 521-529 (2004).
    [CrossRef]
  10. A. Lapucci and M. Ciofini, "Polarization state modifications in the propagation of high azimuthal order annular beams," Opt. Express 9, 603-609 (2001).
    [CrossRef] [PubMed]
  11. F. C. Burns and S. R. Cain, "The effect of pulse repetition rate on laser ablation of polyimide and polymethylmethacrylate based polymers," J. Phys. D 29, 1349-1355 (1996).
    [CrossRef]
  12. E. K. Illy, D. J. W. Brown, M. J. Withford, and J. A. Piper, "Enhanced polymer ablation rates using high-repetition-rate ultra-violet lasers," IEEE J. Select Top. Quantum Electron. 5, 1543-1548 (1999).
    [CrossRef]
  13. D. J. Baer, G. D. Marshall, D. W. Coutts, R. P. Mildren, and M. J. Withford, "A simple method enabling pulse-on-command from high power, high frequency lasers," Rev. Sci. Instru. 77, 93103 (2006).
    [CrossRef]

2006 (1)

D. J. Baer, G. D. Marshall, D. W. Coutts, R. P. Mildren, and M. J. Withford, "A simple method enabling pulse-on-command from high power, high frequency lasers," Rev. Sci. Instru. 77, 93103 (2006).
[CrossRef]

2005 (1)

A. V. Zaitsev, O. B. Kovalev, A. M. Orishich, and V. M. Fomin, "Numerical analysis of the effect of the TEM00 radiation mode polarization on the cut shape in laser cutting of thick metal sheets," Quantum Electron. 35, 200-204 (2005).
[CrossRef]

2004 (1)

A. Borowiec and H. K. Haugen, "Femtosecond laser micromachining of grooves in indium phosphide," Appl. Phys. A 79, 521-529 (2004).
[CrossRef]

2003 (1)

N. Barsch, K. Korber, A. Ostendorf, and K. H. Tonshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).

2002 (1)

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

2001 (1)

2000 (1)

A. V. Nesterov and V. G. Niziev, "Laser beams with axially symmetric polarization," J. Phys. D. 33, 1817-1822 (2000).
[CrossRef]

1999 (4)

V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D. 32, 1455-1461 (1999).
[CrossRef]

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

X. Zhu, A. Yu. Naumov, D. M. Villeneuve, and P. B. Corkum, "Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses," Appl. Phys. A 69, S367-S371 (1999).
[CrossRef]

E. K. Illy, D. J. W. Brown, M. J. Withford, and J. A. Piper, "Enhanced polymer ablation rates using high-repetition-rate ultra-violet lasers," IEEE J. Select Top. Quantum Electron. 5, 1543-1548 (1999).
[CrossRef]

1996 (1)

F. C. Burns and S. R. Cain, "The effect of pulse repetition rate on laser ablation of polyimide and polymethylmethacrylate based polymers," J. Phys. D 29, 1349-1355 (1996).
[CrossRef]

1982 (1)

M. W. Sasnett and R. J. Saunders, "Method and apparatus for laser scribing and cutting," U.S. patent 4,336,439 (1982).

Baer, D. J.

D. J. Baer, G. D. Marshall, D. W. Coutts, R. P. Mildren, and M. J. Withford, "A simple method enabling pulse-on-command from high power, high frequency lasers," Rev. Sci. Instru. 77, 93103 (2006).
[CrossRef]

Barsch, N.

N. Barsch, K. Korber, A. Ostendorf, and K. H. Tonshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).

Borowiec, A.

A. Borowiec and H. K. Haugen, "Femtosecond laser micromachining of grooves in indium phosphide," Appl. Phys. A 79, 521-529 (2004).
[CrossRef]

Brown, D. J. W.

E. K. Illy, D. J. W. Brown, M. J. Withford, and J. A. Piper, "Enhanced polymer ablation rates using high-repetition-rate ultra-violet lasers," IEEE J. Select Top. Quantum Electron. 5, 1543-1548 (1999).
[CrossRef]

Burns, F. C.

F. C. Burns and S. R. Cain, "The effect of pulse repetition rate on laser ablation of polyimide and polymethylmethacrylate based polymers," J. Phys. D 29, 1349-1355 (1996).
[CrossRef]

Cain, S. R.

F. C. Burns and S. R. Cain, "The effect of pulse repetition rate on laser ablation of polyimide and polymethylmethacrylate based polymers," J. Phys. D 29, 1349-1355 (1996).
[CrossRef]

Ciofini, M.

Corkum, P. B.

X. Zhu, A. Yu. Naumov, D. M. Villeneuve, and P. B. Corkum, "Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses," Appl. Phys. A 69, S367-S371 (1999).
[CrossRef]

Coutts, D. W.

D. J. Baer, G. D. Marshall, D. W. Coutts, R. P. Mildren, and M. J. Withford, "A simple method enabling pulse-on-command from high power, high frequency lasers," Rev. Sci. Instru. 77, 93103 (2006).
[CrossRef]

Fallnich, C.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Fomin, V. M.

A. V. Zaitsev, O. B. Kovalev, A. M. Orishich, and V. M. Fomin, "Numerical analysis of the effect of the TEM00 radiation mode polarization on the cut shape in laser cutting of thick metal sheets," Quantum Electron. 35, 200-204 (2005).
[CrossRef]

Haugen, H. K.

A. Borowiec and H. K. Haugen, "Femtosecond laser micromachining of grooves in indium phosphide," Appl. Phys. A 79, 521-529 (2004).
[CrossRef]

Illy, E. K.

E. K. Illy, D. J. W. Brown, M. J. Withford, and J. A. Piper, "Enhanced polymer ablation rates using high-repetition-rate ultra-violet lasers," IEEE J. Select Top. Quantum Electron. 5, 1543-1548 (1999).
[CrossRef]

Kamlage, G.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Korber, K.

N. Barsch, K. Korber, A. Ostendorf, and K. H. Tonshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).

Kovalev, O. B.

A. V. Zaitsev, O. B. Kovalev, A. M. Orishich, and V. M. Fomin, "Numerical analysis of the effect of the TEM00 radiation mode polarization on the cut shape in laser cutting of thick metal sheets," Quantum Electron. 35, 200-204 (2005).
[CrossRef]

Lapucci, A.

Lim, L. E. N.

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

Marshall, G. D.

D. J. Baer, G. D. Marshall, D. W. Coutts, R. P. Mildren, and M. J. Withford, "A simple method enabling pulse-on-command from high power, high frequency lasers," Rev. Sci. Instru. 77, 93103 (2006).
[CrossRef]

Mildren, R. P.

D. J. Baer, G. D. Marshall, D. W. Coutts, R. P. Mildren, and M. J. Withford, "A simple method enabling pulse-on-command from high power, high frequency lasers," Rev. Sci. Instru. 77, 93103 (2006).
[CrossRef]

Momma, C.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Naumov, A. Yu.

X. Zhu, A. Yu. Naumov, D. M. Villeneuve, and P. B. Corkum, "Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses," Appl. Phys. A 69, S367-S371 (1999).
[CrossRef]

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, "Laser beams with axially symmetric polarization," J. Phys. D. 33, 1817-1822 (2000).
[CrossRef]

V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D. 32, 1455-1461 (1999).
[CrossRef]

Ngoi, B. K. A.

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, "Laser beams with axially symmetric polarization," J. Phys. D. 33, 1817-1822 (2000).
[CrossRef]

V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D. 32, 1455-1461 (1999).
[CrossRef]

Nolte, S.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Orishich, A. M.

A. V. Zaitsev, O. B. Kovalev, A. M. Orishich, and V. M. Fomin, "Numerical analysis of the effect of the TEM00 radiation mode polarization on the cut shape in laser cutting of thick metal sheets," Quantum Electron. 35, 200-204 (2005).
[CrossRef]

Ostendorf, A.

N. Barsch, K. Korber, A. Ostendorf, and K. H. Tonshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Piper, J. A.

E. K. Illy, D. J. W. Brown, M. J. Withford, and J. A. Piper, "Enhanced polymer ablation rates using high-repetition-rate ultra-violet lasers," IEEE J. Select Top. Quantum Electron. 5, 1543-1548 (1999).
[CrossRef]

Sasnett, M. W.

M. W. Sasnett and R. J. Saunders, "Method and apparatus for laser scribing and cutting," U.S. patent 4,336,439 (1982).

Saunders, R. J.

M. W. Sasnett and R. J. Saunders, "Method and apparatus for laser scribing and cutting," U.S. patent 4,336,439 (1982).

Sivakumar, N. R.

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

Stanley, P.

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

Tan, B.

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

Tonshoff, K. H.

N. Barsch, K. Korber, A. Ostendorf, and K. H. Tonshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).

Venkatakrishnan, K.

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

Villeneuve, D. M.

X. Zhu, A. Yu. Naumov, D. M. Villeneuve, and P. B. Corkum, "Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses," Appl. Phys. A 69, S367-S371 (1999).
[CrossRef]

von Alvensleben, F.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Welling, H.

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

Withford, M. J.

D. J. Baer, G. D. Marshall, D. W. Coutts, R. P. Mildren, and M. J. Withford, "A simple method enabling pulse-on-command from high power, high frequency lasers," Rev. Sci. Instru. 77, 93103 (2006).
[CrossRef]

E. K. Illy, D. J. W. Brown, M. J. Withford, and J. A. Piper, "Enhanced polymer ablation rates using high-repetition-rate ultra-violet lasers," IEEE J. Select Top. Quantum Electron. 5, 1543-1548 (1999).
[CrossRef]

Zaitsev, A. V.

A. V. Zaitsev, O. B. Kovalev, A. M. Orishich, and V. M. Fomin, "Numerical analysis of the effect of the TEM00 radiation mode polarization on the cut shape in laser cutting of thick metal sheets," Quantum Electron. 35, 200-204 (2005).
[CrossRef]

Zhu, X.

X. Zhu, A. Yu. Naumov, D. M. Villeneuve, and P. B. Corkum, "Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses," Appl. Phys. A 69, S367-S371 (1999).
[CrossRef]

Appl. Phys. A (5)

S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, "Polarization effects in ultrashort-pulse laser drilling," Appl. Phys. A 68, 563-567 (1999).
[CrossRef]

N. Barsch, K. Korber, A. Ostendorf, and K. H. Tonshoff, "Ablation and cutting of planar silicon devices using femtosecond laser pulses," Appl. Phys. A 77, 237-242 (2003).

X. Zhu, A. Yu. Naumov, D. M. Villeneuve, and P. B. Corkum, "Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses," Appl. Phys. A 69, S367-S371 (1999).
[CrossRef]

K. Venkatakrishnan, B. K. A. Ngoi, P. Stanley, L. E. N. Lim, B. Tan, and N. R. Sivakumar, "Laser writing techniques for photomask fabrication using a femtosecond laser," Appl. Phys. A 74, 493-496 (2002).
[CrossRef]

A. Borowiec and H. K. Haugen, "Femtosecond laser micromachining of grooves in indium phosphide," Appl. Phys. A 79, 521-529 (2004).
[CrossRef]

IEEE J. Select Top. Quantum Electron. (1)

E. K. Illy, D. J. W. Brown, M. J. Withford, and J. A. Piper, "Enhanced polymer ablation rates using high-repetition-rate ultra-violet lasers," IEEE J. Select Top. Quantum Electron. 5, 1543-1548 (1999).
[CrossRef]

J. Phys. D (1)

F. C. Burns and S. R. Cain, "The effect of pulse repetition rate on laser ablation of polyimide and polymethylmethacrylate based polymers," J. Phys. D 29, 1349-1355 (1996).
[CrossRef]

J. Phys. D. (2)

A. V. Nesterov and V. G. Niziev, "Laser beams with axially symmetric polarization," J. Phys. D. 33, 1817-1822 (2000).
[CrossRef]

V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D. 32, 1455-1461 (1999).
[CrossRef]

Opt. Express (1)

Quantum Electron. (1)

A. V. Zaitsev, O. B. Kovalev, A. M. Orishich, and V. M. Fomin, "Numerical analysis of the effect of the TEM00 radiation mode polarization on the cut shape in laser cutting of thick metal sheets," Quantum Electron. 35, 200-204 (2005).
[CrossRef]

Rev. Sci. Instru. (1)

D. J. Baer, G. D. Marshall, D. W. Coutts, R. P. Mildren, and M. J. Withford, "A simple method enabling pulse-on-command from high power, high frequency lasers," Rev. Sci. Instru. 77, 93103 (2006).
[CrossRef]

Other (1)

M. W. Sasnett and R. J. Saunders, "Method and apparatus for laser scribing and cutting," U.S. patent 4,336,439 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Optical micrographs showing the exit surface of 40 μ m wide scribes machined in silicon using a nanosecond pulsed 355   nm laser (Lightwave Electronics) with the direction of polarization (a) parallel and (b) pernendicular to the long axis of the scribe. The incident average power was 100   mW , and the pulse rate was 500   Hz . The kerf quality for the parallel polarization case is poor relative to the perpendicular polarization one.

Fig. 2
Fig. 2

(Color online) Schematic showing the laser, position of the intracavity chopper, beam diagnostics, and electronic controller.

Fig. 3
Fig. 3

(Color online) Schematic showing the design of the chopper wheel and its position in the laser cavity. The outer ring controlled the master clock (associated LED and detector not shown). The inner ring consisted of a first set of slits with polarization elements orientated in the p direction and a second set with polarization elements orientated in the s direction.

Fig. 4
Fig. 4

Oscilloscope traces showing the polarization of the laser output beam being dynamically switched between p (top) and s (bottom) orientations.

Fig. 5
Fig. 5

Temporal laser pulse shapes for the (a) p-polarized and (b) s-polarized states.

Fig. 6
Fig. 6

Oscilloscope traces of the laser output switching in a burst-mode fashion between p- (top) and s- (bottom) polarization directions.

Metrics