Abstract

We explore a nanowire-based localized surface plasmon resonance (LSPR) sensor system using an effective medium for the nanowire layer. The effective medium is obtained based on the far-field characteristics of the nanowire-based LSPR system. Near-field properties as well as the sensitivity performance of the effective medium-based SPR structure are compared to exact results of the nanowire-based LSPR system. The results indicate that an effective medium can reproduce the far-field and near-field characteristics of nanowires fairly well, while it represents the nanowire-based LSPR on a limited basis in terms of sensitivity characteristics, particularly when the LSPR is significantly enhanced.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. B. Liedberg, C. Nylanderm, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
    [CrossRef]
  3. K. Matsubara, S. Kawata, and S. Minami, "Optical chemical sensor based on surface plasmon measurement," Appl. Opt. 27, 1160-1163 (1988).
    [CrossRef] [PubMed]
  4. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  5. M. J. O'Brien, V. H. Pérez-Luna, S. R. J. Brueck, and G. P. López, "A surface plasmon resonance array biosensor based on spectroscopic imaging," Biosens. Bioelectron. 16, 97-108 (2001).
    [CrossRef] [PubMed]
  6. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  7. P. Mulvaney, "Surface plasmon spectroscopy of nanosized metal particles," Langmuir 12, 788-800 (1996).
    [CrossRef]
  8. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10549-10556 (2000).
    [CrossRef]
  9. T. Okamoto, I. Yamaguchi, and T. Kobayashi, "Local plasmon sensor with gold colloid monolayers deposited upon glass substrates," Opt. Lett. 25, 372-374 (2000).
    [CrossRef]
  10. G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, "Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films," J. Am. Chem. Soc. 123, 3177-3178 (2001).
    [CrossRef] [PubMed]
  11. L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: Particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
    [CrossRef]
  12. E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
    [CrossRef]
  13. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
    [CrossRef]
  14. K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
    [CrossRef] [PubMed]
  15. K. Aslan, J. R. Lakowicz, and G. D. Geddes, "Plasmon light scattering in biology and medicine: new sensing approaches, vision and perspectives," Curr. Opin. Chem. Biol. 9, 538-544 (2005).
    [CrossRef] [PubMed]
  16. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
    [CrossRef] [PubMed]
  17. D. Kim, "Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors," J. Opt. Soc. Am. A 23, 2307-2314 (2006).
    [CrossRef]
  18. S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).
  19. Z. Liu, H. Wang, H. Li, and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
    [CrossRef]
  20. D. Dalacu and L. Martinu, "Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films," J. Appl. Phys. 87, 228-235 (2000).
    [CrossRef]
  21. J. J. Saarinen, E. M. Vartiainen, and K.-E. Peiponen, "Retrieval of the complex permittivity of spherical nanoparticles in a liquid host material from a spectral surface plasmon resonance measurement," Appl. Phys. Lett. 83, 893-895 (2003).
    [CrossRef]
  22. S. Moon and D. Kim, "Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals," J. Opt. Soc. Am. A 23, 199-207 (2006).
    [CrossRef]
  23. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [CrossRef]
  24. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986).
    [CrossRef]
  25. L. Li and C. W. Haggans, "Convergence of the coupled-wave method for metallic lamellar diffraction gratings," J. Opt. Soc. Am. A 10, 1184-1189 (1993).
    [CrossRef]
  26. Ph. Lalanne and G. M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," J. Opt. Soc. Am. A 13, 779-784 (1996).
    [CrossRef]
  27. G. Granet and B. Guizal, "Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization," J. Opt. Soc. Am. A 13, 1019-1023 (1996).
    [CrossRef]
  28. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870-1876 (1996).
    [CrossRef]
  29. J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London , 203, 385-420 (1904).
    [CrossRef]
  30. R. J. Gehr, G. L. Fischer, and R. W. Boyd, "Nonlinear-optical response of porous-glass-based composite materials." J. Opt. Soc. Am. B 14, 2310-2314 (1997).
    [CrossRef]
  31. U. Kreibig, "Electronic properties of small silver particles: the optical constants and their temperature dependence," J. Phys. 4, 999-1014 (1974).
    [CrossRef]
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1983) Chap. 12.
  33. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
    [CrossRef]
  34. E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
    [CrossRef]

2006

2005

K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
[CrossRef] [PubMed]

K. Aslan, J. R. Lakowicz, and G. D. Geddes, "Plasmon light scattering in biology and medicine: new sensing approaches, vision and perspectives," Curr. Opin. Chem. Biol. 9, 538-544 (2005).
[CrossRef] [PubMed]

2003

J. J. Saarinen, E. M. Vartiainen, and K.-E. Peiponen, "Retrieval of the complex permittivity of spherical nanoparticles in a liquid host material from a spectral surface plasmon resonance measurement," Appl. Phys. Lett. 83, 893-895 (2003).
[CrossRef]

2002

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

2001

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

M. J. O'Brien, V. H. Pérez-Luna, S. R. J. Brueck, and G. P. López, "A surface plasmon resonance array biosensor based on spectroscopic imaging," Biosens. Bioelectron. 16, 97-108 (2001).
[CrossRef] [PubMed]

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, "Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films," J. Am. Chem. Soc. 123, 3177-3178 (2001).
[CrossRef] [PubMed]

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

2000

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

T. Okamoto, I. Yamaguchi, and T. Kobayashi, "Local plasmon sensor with gold colloid monolayers deposited upon glass substrates," Opt. Lett. 25, 372-374 (2000).
[CrossRef]

D. Dalacu and L. Martinu, "Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films," J. Appl. Phys. 87, 228-235 (2000).
[CrossRef]

1999

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: Particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

1998

Z. Liu, H. Wang, H. Li, and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
[CrossRef]

1997

1996

1993

1988

1986

1983

B. Liedberg, C. Nylanderm, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

1982

1974

U. Kreibig, "Electronic properties of small silver particles: the optical constants and their temperature dependence," J. Phys. 4, 999-1014 (1974).
[CrossRef]

1956

S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

1904

J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London , 203, 385-420 (1904).
[CrossRef]

Aslan, K.

K. Aslan, J. R. Lakowicz, and G. D. Geddes, "Plasmon light scattering in biology and medicine: new sensing approaches, vision and perspectives," Curr. Opin. Chem. Biol. 9, 538-544 (2005).
[CrossRef] [PubMed]

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1983) Chap. 12.

Boyd, R. W.

Brueck, S. R. J.

M. J. O'Brien, V. H. Pérez-Luna, S. R. J. Brueck, and G. P. López, "A surface plasmon resonance array biosensor based on spectroscopic imaging," Biosens. Bioelectron. 16, 97-108 (2001).
[CrossRef] [PubMed]

Byun, K. M.

Cha, S.

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Dalacu, D.

D. Dalacu and L. Martinu, "Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films," J. Appl. Phys. 87, 228-235 (2000).
[CrossRef]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Fendler, J. H.

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Fischer, G. L.

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Gaylord, T. K.

Geddes, G. D.

K. Aslan, J. R. Lakowicz, and G. D. Geddes, "Plasmon light scattering in biology and medicine: new sensing approaches, vision and perspectives," Curr. Opin. Chem. Biol. 9, 538-544 (2005).
[CrossRef] [PubMed]

Gehr, R. J.

Granet, G.

Guizal, B.

Haggans, C. W.

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Hohng, S. C.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1983) Chap. 12.

Hutter, E.

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

Kalyuzhny, G.

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, "Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films," J. Am. Chem. Soc. 123, 3177-3178 (2001).
[CrossRef] [PubMed]

Kawata, S.

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Kim, D.

Kim, D. S.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Kim, J.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Kim, S. J.

Kobayashi, T.

Kreibig, U.

U. Kreibig, "Electronic properties of small silver particles: the optical constants and their temperature dependence," J. Phys. 4, 999-1014 (1974).
[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Lakowicz, J. R.

K. Aslan, J. R. Lakowicz, and G. D. Geddes, "Plasmon light scattering in biology and medicine: new sensing approaches, vision and perspectives," Curr. Opin. Chem. Biol. 9, 538-544 (2005).
[CrossRef] [PubMed]

Lalanne, Ph.

Li, H.

Z. Liu, H. Wang, H. Li, and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
[CrossRef]

Li, L.

Liedberg, B.

B. Liedberg, C. Nylanderm, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Lienau, C.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Liu, J.-F.

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Liu, Z.

Z. Liu, H. Wang, H. Li, and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
[CrossRef]

López, G. P.

M. J. O'Brien, V. H. Pérez-Luna, S. R. J. Brueck, and G. P. López, "A surface plasmon resonance array biosensor based on spectroscopic imaging," Biosens. Bioelectron. 16, 97-108 (2001).
[CrossRef] [PubMed]

Lundström, I.

B. Liedberg, C. Nylanderm, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Lyon, L. A.

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: Particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

Malyarchuk, V.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Martinu, L.

D. Dalacu and L. Martinu, "Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films," J. Appl. Phys. 87, 228-235 (2000).
[CrossRef]

Matsubara, K.

Maxwell-Garnett, J. C.

J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London , 203, 385-420 (1904).
[CrossRef]

Minami, S.

Moharam, M. G.

Moon, S.

Morris, G. M.

Muller, R.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

P. Mulvaney, "Surface plasmon spectroscopy of nanosized metal particles," Langmuir 12, 788-800 (1996).
[CrossRef]

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: Particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Nylanderm, C.

B. Liedberg, C. Nylanderm, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

O'Brien, M. J.

M. J. O'Brien, V. H. Pérez-Luna, S. R. J. Brueck, and G. P. López, "A surface plasmon resonance array biosensor based on spectroscopic imaging," Biosens. Bioelectron. 16, 97-108 (2001).
[CrossRef] [PubMed]

Okamoto, T.

Park, J.

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Park, J. W.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Park, Q. H.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Peiponen, K.-E.

J. J. Saarinen, E. M. Vartiainen, and K.-E. Peiponen, "Retrieval of the complex permittivity of spherical nanoparticles in a liquid host material from a spectral surface plasmon resonance measurement," Appl. Phys. Lett. 83, 893-895 (2003).
[CrossRef]

Pena, D. J.

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: Particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Pérez-Luna, V. H.

M. J. O'Brien, V. H. Pérez-Luna, S. R. J. Brueck, and G. P. López, "A surface plasmon resonance array biosensor based on spectroscopic imaging," Biosens. Bioelectron. 16, 97-108 (2001).
[CrossRef] [PubMed]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Roy, D.

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Rubinstein, I.

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, "Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films," J. Am. Chem. Soc. 123, 3177-3178 (2001).
[CrossRef] [PubMed]

Rytov, S. M.

S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

Ryu, H. Y.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Saarinen, J. J.

J. J. Saarinen, E. M. Vartiainen, and K.-E. Peiponen, "Retrieval of the complex permittivity of spherical nanoparticles in a liquid host material from a spectral surface plasmon resonance measurement," Appl. Phys. Lett. 83, 893-895 (2003).
[CrossRef]

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Schneeweiss, M. A.

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, "Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films," J. Am. Chem. Soc. 123, 3177-3178 (2001).
[CrossRef] [PubMed]

Shanzer, A.

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, "Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films," J. Am. Chem. Soc. 123, 3177-3178 (2001).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Van Duyne, R. P.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

Vartiainen, E. M.

J. J. Saarinen, E. M. Vartiainen, and K.-E. Peiponen, "Retrieval of the complex permittivity of spherical nanoparticles in a liquid host material from a spectral surface plasmon resonance measurement," Appl. Phys. Lett. 83, 893-895 (2003).
[CrossRef]

Vaskevich, A.

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, "Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films," J. Am. Chem. Soc. 123, 3177-3178 (2001).
[CrossRef] [PubMed]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Wang, H.

Z. Liu, H. Wang, H. Li, and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
[CrossRef]

Wang, X.

Z. Liu, H. Wang, H. Li, and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
[CrossRef]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Yamaguchi, I.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Yi, J.

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Yoo, K. H.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Yoon, Y. C.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239-3241 (2002).
[CrossRef]

Z. Liu, H. Wang, H. Li, and X. Wang, "Red shift of plasmon resonance frequency due to the interacting Ag nanoparticles embedded in single crystal SiO2 by implantation," Appl. Phys. Lett. 72, 1823-1825 (1998).
[CrossRef]

J. J. Saarinen, E. M. Vartiainen, and K.-E. Peiponen, "Retrieval of the complex permittivity of spherical nanoparticles in a liquid host material from a spectral surface plasmon resonance measurement," Appl. Phys. Lett. 83, 893-895 (2003).
[CrossRef]

Biosens. Bioelectron.

M. J. O'Brien, V. H. Pérez-Luna, S. R. J. Brueck, and G. P. López, "A surface plasmon resonance array biosensor based on spectroscopic imaging," Biosens. Bioelectron. 16, 97-108 (2001).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol.

K. Aslan, J. R. Lakowicz, and G. D. Geddes, "Plasmon light scattering in biology and medicine: new sensing approaches, vision and perspectives," Curr. Opin. Chem. Biol. 9, 538-544 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, "Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films," J. Am. Chem. Soc. 123, 3177-3178 (2001).
[CrossRef] [PubMed]

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

J. Appl. Phys.

D. Dalacu and L. Martinu, "Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films," J. Appl. Phys. 87, 228-235 (2000).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys.

U. Kreibig, "Electronic properties of small silver particles: the optical constants and their temperature dependence," J. Phys. 4, 999-1014 (1974).
[CrossRef]

J. Phys. Chem. B

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: Particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Langmuir

P. Mulvaney, "Surface plasmon spectroscopy of nanosized metal particles," Langmuir 12, 788-800 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Philos. Trans. R. Soc. London

J. C. Maxwell-Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London , 203, 385-420 (1904).
[CrossRef]

Phys. Rev. Lett.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002).
[CrossRef] [PubMed]

Sens. Actuators

B. Liedberg, C. Nylanderm, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators 4, 299-304 (1983).
[CrossRef]

Sens. Actuators B

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Sov. Phys. JETP

S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1983) Chap. 12.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Configurations considered in this paper. (a) Gold nanowires of period Λ and thickness d g are assumed to be on a gold thin film of thickness d f and a glass (BK7) substrate. (b) Optically equivalent homogeneous effective layer of thickness d g is on a gold thin film and a glass substrate. A beam is incident at an angle θ in , ε 1 , ε 3 , and ε 4 are the permittivities of air, gold film, and the glass substrate, respectively. ε 2 , eff is the effective permittivity of the nanowire layer.

Fig. 2
Fig. 2

(a) Resonance angles ( θ SP , squares), (b) calculated effective index n 2 , eff (squares), and (c) k 2 , eff (squares), θ SP has been calculated by RCWA. Filled and empty symbols are for Λ = 50   nm and Λ = 100   nm , respectively. (d) Standard deviation of EMT results from RCWA as a measure of the approximation.

Fig. 3
Fig. 3

SPR characteristics of a nanowire LSPR structure with d f = 40   nm and d g = 20   nm , calculated by RCWA (solid curve) and EMT (dotted curve) when VF = (a) 10%, (b) 50%, and (c) 90%.

Fig. 4
Fig. 4

(Color online) Magnetic field intensity ( | H y | 2 ) of a nanowire LSPR structure at VF = 10 % and Λ = 50   nm . (a) Near-field distribution calculated by FDTD and (b) by the EMT based on a four-layer Fresnel equation given in Eqs. (1) and (2). (c) Field profiles by EMT (across a cross section represented by a ) and FDTD ( b through a nanowire and c between nanowires).

Fig. 5
Fig. 5

(Color online) Same as Fig. 4. For VF = 50 % and Λ = 50   nm .

Fig. 6
Fig. 6

(Color online) Same as Fig. 4. For VF = 90% and Λ = 50   nm .

Fig. 7
Fig. 7

(Color online) Same as Fig. 4. For VF = 10% and Λ = 100   nm .

Fig. 8
Fig. 8

(Color online) Same as Fig. 4. For VF = 50% and Λ = 100   nm .

Fig. 9
Fig. 9

(Color online) Same as Fig. 4. For VF = 90% and Λ = 100   nm .

Fig. 10
Fig. 10

SEF calculated by RCWA on a nanowire-based LSPR structure and that of an effective medium-based structure for (a) Λ = 50   nm and (b) Λ = 100   nm .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R = | ( r 4 / 3 e j δ 3 + r 3 / 2 e j δ 3 ) e j δ 2 + ( r 4 / 3 r 3 / 2 e j δ 3 + e j δ 3 ) r 2 / 1 e j δ 2 ( e j δ 3 + r 4 / 3 r 3 / 2 e j δ 3 ) e j δ 2 + ( r 3 / 2 e j δ 3 + r 4 / 3 e j δ 3 ) r 2 / 1 e j δ 2 | 2 ,
δ 2 = 2 π λ 0 ε 2 , eff d g cos θ 2 ,
δ 3 = 2 π λ 0 ε 3 d f cos θ 3 ,
ε 2 , eff ε 1 ε 2 , eff + 2 ε 1 = VF   ε 3 ε 1 ε 3 + 2 ε 1 ,
1 ε 2 , eff = VF ε 3 + 1 VF ε 1 .

Metrics