Abstract

A magneto-optic sensor is proposed and experimentally demonstrated. The sensing unit is mainly composed of an electro-optic modulator, a Faraday magneto-optic glass, and two polarizers. Different from the conventional magneto-optic sensors, this sensor utilizes a time-division-multiplexed and alternately polarized light carrier whose azimuthal angle is periodically alterable between two orthogonal linear polarization states. In particular, this sensing scheme is suitable for dc magnetic field or current measurement, and the measurement result is free from the influences of light intensity fluctuation and environmental electromagnetic interference, due to the applications of square-wave modulation and lock-in amplification techniques. The dc magnetic field in the range of ±(0.067 ∼ 20) mT has been remotely measured and the nonlinear error is less than 1.0%.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yoshino, "Optical fiber sensors for electric industry," in Proc. SPIE 798, 258-266 (1987).
  2. Emerging Technologies Working Group and Fiber Optic Sensors Working Group, "Optical current transducers for power systems: a review," IEEE Trans. Power Deliv. 9, 1778-1788 (1994).
  3. K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, "Optical fiber sensor for the electric power industry," Opt. Lasers Eng. 43, 511-526 (2005).
    [CrossRef]
  4. C. C. Robinson, "Longitudinal Kerr magnetooptic effect in thin film of iron, nickel, and permalloy," J. Opt. Soc. Am. 53, 681-690 (1963).
    [CrossRef]
  5. T. Yoshino, K. Hirao, and S. Ishibashi, "A practical apparatus for measuring Kerr rotation angle using Faraday cell," Seisan Kenkyu 35, 497-450 (1983).
  6. K. Turvey, "Determination of Verdet constant from combined ac and dc measurements," Rev. Sci. Instrum. 64, 1561-1568 (1993).
    [CrossRef]
  7. T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
    [CrossRef]
  8. T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, "Common path optical heterodyne fiber sensors," J. Lightwave Technol. 10, 503-513 (1992).
    [CrossRef]
  9. J. Blake, P. Tantaswadi, and R. T. de Carvalho, "In-line Sagnac interferometer current sensor," IEEE Trans. Power Deliv. 11, 116-121 (1996).
    [CrossRef]
  10. Y. Takahashi and T. Yoshino, "Ring laser type fiber ring laser with flint glass fiber and its sensor applications," J. Lightwave Technol. 17, 591-597 (1999).
    [CrossRef]
  11. K. D. Oh, A. Wang, and R. Claus, "Fiber-optic extrinsic Fabry-Perot dc magnetic field sensor," Opt. Lett. 29, 2115-2117 (2004).
    [CrossRef] [PubMed]
  12. A. E. Petersen, "Portable optical ac- and proposed dc-current sensor for high voltage applications," IEEE Trans. Power Deliv. 10, 595-599 (1995).
    [CrossRef]
  13. C. Li and X. Cui, "Pulse-controlled polarization converter and its application," Acta Photonica Sin. 26, 929-934 (1998).
  14. C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
    [CrossRef]
  15. C. Li and X. Cui, "An optical voltage and current sensor with electrically switchable quarter waveplate," Sens. Actuators , A 126, 62-67 (2006).
    [CrossRef]
  16. S. Li, C. Yang, E. Zhang, and G. Jin, "Compact optical roll-angle sensor with large measurement range and high sensitivity," Opt. Lett. 30, 242-244 (2005).
    [CrossRef] [PubMed]

2006

C. Li and X. Cui, "An optical voltage and current sensor with electrically switchable quarter waveplate," Sens. Actuators , A 126, 62-67 (2006).
[CrossRef]

2005

S. Li, C. Yang, E. Zhang, and G. Jin, "Compact optical roll-angle sensor with large measurement range and high sensitivity," Opt. Lett. 30, 242-244 (2005).
[CrossRef] [PubMed]

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, "Optical fiber sensor for the electric power industry," Opt. Lasers Eng. 43, 511-526 (2005).
[CrossRef]

2004

1999

1998

C. Li and X. Cui, "Pulse-controlled polarization converter and its application," Acta Photonica Sin. 26, 929-934 (1998).

1996

J. Blake, P. Tantaswadi, and R. T. de Carvalho, "In-line Sagnac interferometer current sensor," IEEE Trans. Power Deliv. 11, 116-121 (1996).
[CrossRef]

1995

A. E. Petersen, "Portable optical ac- and proposed dc-current sensor for high voltage applications," IEEE Trans. Power Deliv. 10, 595-599 (1995).
[CrossRef]

1994

Emerging Technologies Working Group and Fiber Optic Sensors Working Group, "Optical current transducers for power systems: a review," IEEE Trans. Power Deliv. 9, 1778-1788 (1994).

1993

K. Turvey, "Determination of Verdet constant from combined ac and dc measurements," Rev. Sci. Instrum. 64, 1561-1568 (1993).
[CrossRef]

1992

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, "Common path optical heterodyne fiber sensors," J. Lightwave Technol. 10, 503-513 (1992).
[CrossRef]

1987

T. Yoshino, "Optical fiber sensors for electric industry," in Proc. SPIE 798, 258-266 (1987).

1983

T. Yoshino, K. Hirao, and S. Ishibashi, "A practical apparatus for measuring Kerr rotation angle using Faraday cell," Seisan Kenkyu 35, 497-450 (1983).

1982

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
[CrossRef]

1963

Blake, J.

J. Blake, P. Tantaswadi, and R. T. de Carvalho, "In-line Sagnac interferometer current sensor," IEEE Trans. Power Deliv. 11, 116-121 (1996).
[CrossRef]

Bohnert, K.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, "Optical fiber sensor for the electric power industry," Opt. Lasers Eng. 43, 511-526 (2005).
[CrossRef]

Brandle, H.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, "Optical fiber sensor for the electric power industry," Opt. Lasers Eng. 43, 511-526 (2005).
[CrossRef]

Claus, R.

Cui, X.

C. Li and X. Cui, "An optical voltage and current sensor with electrically switchable quarter waveplate," Sens. Actuators , A 126, 62-67 (2006).
[CrossRef]

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

C. Li and X. Cui, "Pulse-controlled polarization converter and its application," Acta Photonica Sin. 26, 929-934 (1998).

de Carvalho, R. T.

J. Blake, P. Tantaswadi, and R. T. de Carvalho, "In-line Sagnac interferometer current sensor," IEEE Trans. Power Deliv. 11, 116-121 (1996).
[CrossRef]

Gabus, P.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, "Optical fiber sensor for the electric power industry," Opt. Lasers Eng. 43, 511-526 (2005).
[CrossRef]

Hashimoto, T.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, "Common path optical heterodyne fiber sensors," J. Lightwave Technol. 10, 503-513 (1992).
[CrossRef]

Hirao, K.

T. Yoshino, K. Hirao, and S. Ishibashi, "A practical apparatus for measuring Kerr rotation angle using Faraday cell," Seisan Kenkyu 35, 497-450 (1983).

Ishibashi, S.

T. Yoshino, K. Hirao, and S. Ishibashi, "A practical apparatus for measuring Kerr rotation angle using Faraday cell," Seisan Kenkyu 35, 497-450 (1983).

Itoh, K.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
[CrossRef]

Jin, G.

Kostovic, J.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, "Optical fiber sensor for the electric power industry," Opt. Lasers Eng. 43, 511-526 (2005).
[CrossRef]

Kurosawa, K.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, "Common path optical heterodyne fiber sensors," J. Lightwave Technol. 10, 503-513 (1992).
[CrossRef]

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
[CrossRef]

Li, C.

C. Li and X. Cui, "An optical voltage and current sensor with electrically switchable quarter waveplate," Sens. Actuators , A 126, 62-67 (2006).
[CrossRef]

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

C. Li and X. Cui, "Pulse-controlled polarization converter and its application," Acta Photonica Sin. 26, 929-934 (1998).

Li, S.

Nara, M.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, "Common path optical heterodyne fiber sensors," J. Lightwave Technol. 10, 503-513 (1992).
[CrossRef]

Oh, K. D.

Ose, T.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
[CrossRef]

Petersen, A. E.

A. E. Petersen, "Portable optical ac- and proposed dc-current sensor for high voltage applications," IEEE Trans. Power Deliv. 10, 595-599 (1995).
[CrossRef]

Robinson, C. C.

Takahashi, Y.

Tantaswadi, P.

J. Blake, P. Tantaswadi, and R. T. de Carvalho, "In-line Sagnac interferometer current sensor," IEEE Trans. Power Deliv. 11, 116-121 (1996).
[CrossRef]

Turvey, K.

K. Turvey, "Determination of Verdet constant from combined ac and dc measurements," Rev. Sci. Instrum. 64, 1561-1568 (1993).
[CrossRef]

Wang, A.

Yamaguchi, I.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Yang, C.

Yokota, M.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Yoshino, T.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

Y. Takahashi and T. Yoshino, "Ring laser type fiber ring laser with flint glass fiber and its sensor applications," J. Lightwave Technol. 17, 591-597 (1999).
[CrossRef]

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, "Common path optical heterodyne fiber sensors," J. Lightwave Technol. 10, 503-513 (1992).
[CrossRef]

T. Yoshino, "Optical fiber sensors for electric industry," in Proc. SPIE 798, 258-266 (1987).

T. Yoshino, K. Hirao, and S. Ishibashi, "A practical apparatus for measuring Kerr rotation angle using Faraday cell," Seisan Kenkyu 35, 497-450 (1983).

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
[CrossRef]

Zhang, E.

Acta Photonica Sin.

C. Li and X. Cui, "Pulse-controlled polarization converter and its application," Acta Photonica Sin. 26, 929-934 (1998).

IEEE J. Quantum Electron.

T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, "Fiber-optic Fabry-Perot interferometer and its sensor applications," IEEE J. Quantum Electron. 18, 1624-1633 (1982).
[CrossRef]

IEEE Trans. Instrum. Meas.

C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005).
[CrossRef]

IEEE Trans. Power Deliv.

J. Blake, P. Tantaswadi, and R. T. de Carvalho, "In-line Sagnac interferometer current sensor," IEEE Trans. Power Deliv. 11, 116-121 (1996).
[CrossRef]

A. E. Petersen, "Portable optical ac- and proposed dc-current sensor for high voltage applications," IEEE Trans. Power Deliv. 10, 595-599 (1995).
[CrossRef]

Emerging Technologies Working Group and Fiber Optic Sensors Working Group, "Optical current transducers for power systems: a review," IEEE Trans. Power Deliv. 9, 1778-1788 (1994).

J. Lightwave Technol.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, "Common path optical heterodyne fiber sensors," J. Lightwave Technol. 10, 503-513 (1992).
[CrossRef]

Y. Takahashi and T. Yoshino, "Ring laser type fiber ring laser with flint glass fiber and its sensor applications," J. Lightwave Technol. 17, 591-597 (1999).
[CrossRef]

J. Opt. Soc. Am.

Opt. Lasers Eng.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, "Optical fiber sensor for the electric power industry," Opt. Lasers Eng. 43, 511-526 (2005).
[CrossRef]

Opt. Lett.

Proc. SPIE

T. Yoshino, "Optical fiber sensors for electric industry," in Proc. SPIE 798, 258-266 (1987).

Rev. Sci. Instrum.

K. Turvey, "Determination of Verdet constant from combined ac and dc measurements," Rev. Sci. Instrum. 64, 1561-1568 (1993).
[CrossRef]

Seisan Kenkyu

T. Yoshino, K. Hirao, and S. Ishibashi, "A practical apparatus for measuring Kerr rotation angle using Faraday cell," Seisan Kenkyu 35, 497-450 (1983).

Sens. Actuators

C. Li and X. Cui, "An optical voltage and current sensor with electrically switchable quarter waveplate," Sens. Actuators , A 126, 62-67 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulation of the alternately polarized light carrier and the output time-division-multiplexed sensing signal, where α is polarization azimuthal angle and T c is modulating period.

Fig. 2
Fig. 2

Experimental setup of the magneto-optic sensor based on the square-wave-modulated linearly polarized light carrier, where the EOM is the electro-optic modulator, and the measurand magnetic field is produced by use of a solenoid and the current i ( t ) . LD, laser diode.

Fig. 3
Fig. 3

Block diagram of the sensing signal processing circuit. HP, high-pass filter; LP, low-pass filter.

Fig. 4
Fig. 4

Oscilloscope traces of the output sensing signals: (a) dc magnetic field, (b) ac magnetic field, where u o 1 is the square-wave-modulated sensing signal and u o 2 is the restored measurand signal.

Fig. 5
Fig. 5

Typical nonlinear error distribution of the dc magnetic field measurement in the range of ± ( 0.067 20 )   mT .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J i = [ g ( t ) g ( t + 0.5 T c ) ] I i ,
J o = [ J o x J o y ] = [ cos θ sin θ sin θ cos θ ] J i ,
I o 45 = | J o 45 | 2 = 0.5 | J o x + J o y | 2 , = 0.5 { 1 + [ g ( t ) g ( t + 0.5 T c ) ] sin ( 2 θ ) } I i ,

Metrics