Abstract

We have developed a parallel algorithm for microdigital-holographic particle-tracking velocimetry. The algorithm is used in (1) numerical reconstruction of a particle image computer using a digital hologram, and (2) searching for particles. The numerical reconstruction from the digital hologram makes use of the Fresnel diffraction equation and the FFT (fast Fourier transform), whereas the particle search algorithm looks for local maximum graduation in a reconstruction field represented by a 3D matrix. To achieve high performance computing for both calculations (reconstruction and particle search), two memory partitions are allocated to the 3D matrix. In this matrix, the reconstruction part consists of horizontally placed 2D memory partitions on the x–y plane for the FFT, whereas, the particle search part consists of vertically placed 2D memory partitions set along the z axes. Consequently, the scalability can be obtained for the proportion of processor elements, where the benchmarks are carried out for parallel computation by a SGI Altix machine.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Barnhart, R. J. Adrian, and J. G. C. Papen, "Phase-conjugate holographic system for high-resolution particle-image velocimetry," Appl. Opt. 33, 7159-7170 (1994).
    [CrossRef] [PubMed]
  2. H. Meng and F. Hussain, "In-line recording and off-axis viewing technique for holographic particle velocimetry," Appl. Opt. 34, 1827-1840 (1995).
    [CrossRef] [PubMed]
  3. J. Sheng, E. Malkiel, and J. Katz, "Single beam two-views holographic particle image velocimetry," Appl. Opt. 42, 235-250 (2003).
    [CrossRef] [PubMed]
  4. U. Schnars and W. Jüptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  5. S. Murata and N. Yasuda, "Potential of digital holography in particle measurement," Opt. Laser Technol. 32, 567-574 (2000).
    [CrossRef]
  6. S. Satake, T. Kunugi, K. Takase, Y. Ose, and N. Naito, "Large scale structures of turbulent shear flow," Lect. Notes Comput. Sci. 2858, 468-475 (2003).
    [CrossRef]
  7. S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Opt. Rev. 12, 442-444 (2005).
    [CrossRef]
  8. S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Meas. Sci. Technol. 17, 1647-1651 (2006).
    [CrossRef]

2006 (1)

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

2005 (1)

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Opt. Rev. 12, 442-444 (2005).
[CrossRef]

2003 (2)

S. Satake, T. Kunugi, K. Takase, Y. Ose, and N. Naito, "Large scale structures of turbulent shear flow," Lect. Notes Comput. Sci. 2858, 468-475 (2003).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, "Single beam two-views holographic particle image velocimetry," Appl. Opt. 42, 235-250 (2003).
[CrossRef] [PubMed]

2000 (1)

S. Murata and N. Yasuda, "Potential of digital holography in particle measurement," Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

1995 (1)

1994 (2)

Adrian, R. J.

Barnhart, D. H.

Hussain, F.

Ito, T.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Opt. Rev. 12, 442-444 (2005).
[CrossRef]

Jüptner, W.

Kanamori, H.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

Katz, J.

Kunugi, T.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Opt. Rev. 12, 442-444 (2005).
[CrossRef]

S. Satake, T. Kunugi, K. Takase, Y. Ose, and N. Naito, "Large scale structures of turbulent shear flow," Lect. Notes Comput. Sci. 2858, 468-475 (2003).
[CrossRef]

Malkiel, E.

Meng, H.

Murata, S.

S. Murata and N. Yasuda, "Potential of digital holography in particle measurement," Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

Naito, N.

S. Satake, T. Kunugi, K. Takase, Y. Ose, and N. Naito, "Large scale structures of turbulent shear flow," Lect. Notes Comput. Sci. 2858, 468-475 (2003).
[CrossRef]

Ose, Y.

S. Satake, T. Kunugi, K. Takase, Y. Ose, and N. Naito, "Large scale structures of turbulent shear flow," Lect. Notes Comput. Sci. 2858, 468-475 (2003).
[CrossRef]

Papen, J. G. C.

Satake, S.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Opt. Rev. 12, 442-444 (2005).
[CrossRef]

S. Satake, T. Kunugi, K. Takase, Y. Ose, and N. Naito, "Large scale structures of turbulent shear flow," Lect. Notes Comput. Sci. 2858, 468-475 (2003).
[CrossRef]

Sato, K.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Opt. Rev. 12, 442-444 (2005).
[CrossRef]

Schnars, U.

Sheng, J.

Takase, K.

S. Satake, T. Kunugi, K. Takase, Y. Ose, and N. Naito, "Large scale structures of turbulent shear flow," Lect. Notes Comput. Sci. 2858, 468-475 (2003).
[CrossRef]

Taniguchi, J.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Opt. Rev. 12, 442-444 (2005).
[CrossRef]

Yasuda, N.

S. Murata and N. Yasuda, "Potential of digital holography in particle measurement," Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

Appl. Opt. (4)

Lect. Notes Comput. Sci. (1)

S. Satake, T. Kunugi, K. Takase, Y. Ose, and N. Naito, "Large scale structures of turbulent shear flow," Lect. Notes Comput. Sci. 2858, 468-475 (2003).
[CrossRef]

Meas. Sci. Technol. (1)

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

Opt. Laser Technol. (1)

S. Murata and N. Yasuda, "Potential of digital holography in particle measurement," Opt. Laser Technol. 32, 567-574 (2000).
[CrossRef]

Opt. Rev. (1)

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, "Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry," Opt. Rev. 12, 442-444 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical setup.

Fig. 2
Fig. 2

Fringe image by a CCD camera and a reconstruction particle image: (a) real hologram fringe images and (b) particle image using a digital hologram in the xy plane at 39 .00   μm .

Fig. 3
Fig. 3

Schematic viewgraph showing the search of the particle position using a digital hologram.

Fig. 4
Fig. 4

Memory partition for the reconstruction particle and particle searching.

Fig. 5
Fig. 5

Particle image reconstructed for the overlap region between PX0 and PX1 at the xy plane.

Fig. 6
Fig. 6

Program flow chart.

Fig. 7
Fig. 7

Benchmark samples of (a) fringe images in the microchannel and (b) reconstruction particles in the microchannel.

Fig. 8
Fig. 8

Calculation speed performance for the PE number.

Fig. 9
Fig. 9

Percentage of the FFT calculation time and memory rotation time for the whole processing time for the PE number.

Tables (2)

Tables Icon

Table 1 Comparison of the Number of Processors for SGI Altix

Tables Icon

Table 2 CPU Time for Some Parts in the Program for One Processor for SGI Altix

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Φ ( I , J ) = ( N X / 2 ) N X / 2 ( N Y / 2 ) N Y / 2 I ( x , y ) G ( I , J ) × e 2 π i ( I x + J y ) d x d y = I ^ ( I , J ) G ( I , J ) ,

Metrics