Abstract

To the best of our knowledge, we demonstrate the first no-moving-parts largest aperture profiler design that is also cost effective. Specifically exploited is the large-scale production of thin-film transistor liquid-crystal displays (LCDs) to produce a high intrinsic reliability low-cost profiler. Today, the maximum beam diameter under test can reach 70 cm using 117 cm diagonal LCDs. Experiments conducted with the laboratory LCD profiler include 1D and 2D knife-edge profiling, 2D pinhole profiling, and beam divergence measurements.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Arnaud and C. Neck, "Apparatus for locating and measuring the beam-waist radius of a Gaussian laser beam," U.S. patent 3,617,755 (2 November 1971).
  2. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Clavière, E. A. Franke, and J. M. Franke, "Technique for fast measurement of Gaussian laser beam parameters," Appl. Opt. 10, 2775-2776 (1971).
    [PubMed]
  3. T. F. Johnston and G. H. Williams, "Apparatus for measuring the mode quality of a laser beam," U.S. patent 5,064,284 (12 November 1991).
  4. P. J. Shayler, "Laser beam distribution in the focal region," Appl. Opt. 17, 2673-2674 (1978).
    [CrossRef] [PubMed]
  5. P. J. Brannon, J. P. Anthes, G. L. Cano, and J. E. Powell, "Laser focal spot measurements," J. Appl. Phys. 46, 3576-3579 (1975).
    [CrossRef]
  6. M. K. Giles and E. M. Kim, "Linear systems approach to fiber characterization using beam profile measurements," in Fiber Optics: Short-Haul and Long-Haul Measurements and Applications II, R.L.Galawa, ed., Proc. SPIE 500,67-70 (1984).
  7. H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Surface plasmon polariton-based optical beam profiler," Opt. Lett. 29, 1408-1410 (2004).
    [CrossRef] [PubMed]
  8. E. H. A. Granneman and M. J. van der Wiel, "Laser beam waist determination by means of multiphoton ionization," Rev. Sci. Instrum. 46, 332-334 (1975).
    [CrossRef]
  9. S. M. Sorscher and M. P. Klein, "Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy," Rev. Sci. Instrum. 51, 98-102 (1980).
    [CrossRef]
  10. A. Rose, Y. X. Nie, and R. Gupta, "Laser beam profile measurement by photothermal deflection technique," Appl. Opt. 25, 1738-1741 (1986).
    [CrossRef] [PubMed]
  11. T. Baba, T. Arai, and A. Ono, "Laser beam profile measurement by a thermographic technique," Rev. Sci. Instrum. 57, 2739-2742 (1986).
    [CrossRef]
  12. C. P. Wang, "Measuring 2-D laser-beam phase and intensity profiles: a new technique," Appl. Opt. 23, 1399-1402 (1984).
    [CrossRef] [PubMed]
  13. N. A. Riza, "Digital optical beam profiler," U.S. patent 6,922,233 B2 (26 July 2005).
  14. S. Sumriddetchkajorn and N. A. Riza, "Micro-electro-mechanical system-based digitally controlled optical beam profiler," Appl. Opt. 41, 3506-3510 (2002).
    [CrossRef] [PubMed]
  15. N. A. Riza and M. J. Mughal, "Optical power independent optical beam profiler," Opt. Eng. 43, 793-797 (2004).
    [CrossRef]
  16. N. A. Riza and F. N. Ghauri, "Super resolution hybrid analog-digital optical beam profiler using digital micromirror device," IEEE Photon. Technol. Lett. 17, 1492-1494 (2005).
    [CrossRef]
  17. N. A. Riza and D. Jorgesen, "Minimally invasive optical beam profiler," Opt. Express 12, 1892-1901 (2004).
    [CrossRef] [PubMed]

2005 (1)

N. A. Riza and F. N. Ghauri, "Super resolution hybrid analog-digital optical beam profiler using digital micromirror device," IEEE Photon. Technol. Lett. 17, 1492-1494 (2005).
[CrossRef]

2004 (3)

2002 (1)

1986 (2)

A. Rose, Y. X. Nie, and R. Gupta, "Laser beam profile measurement by photothermal deflection technique," Appl. Opt. 25, 1738-1741 (1986).
[CrossRef] [PubMed]

T. Baba, T. Arai, and A. Ono, "Laser beam profile measurement by a thermographic technique," Rev. Sci. Instrum. 57, 2739-2742 (1986).
[CrossRef]

1984 (1)

1980 (1)

S. M. Sorscher and M. P. Klein, "Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy," Rev. Sci. Instrum. 51, 98-102 (1980).
[CrossRef]

1978 (1)

1975 (2)

P. J. Brannon, J. P. Anthes, G. L. Cano, and J. E. Powell, "Laser focal spot measurements," J. Appl. Phys. 46, 3576-3579 (1975).
[CrossRef]

E. H. A. Granneman and M. J. van der Wiel, "Laser beam waist determination by means of multiphoton ionization," Rev. Sci. Instrum. 46, 332-334 (1975).
[CrossRef]

1971 (1)

Anthes, J. P.

P. J. Brannon, J. P. Anthes, G. L. Cano, and J. E. Powell, "Laser focal spot measurements," J. Appl. Phys. 46, 3576-3579 (1975).
[CrossRef]

Arai, T.

T. Baba, T. Arai, and A. Ono, "Laser beam profile measurement by a thermographic technique," Rev. Sci. Instrum. 57, 2739-2742 (1986).
[CrossRef]

Arnaud, J. A.

J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Clavière, E. A. Franke, and J. M. Franke, "Technique for fast measurement of Gaussian laser beam parameters," Appl. Opt. 10, 2775-2776 (1971).
[PubMed]

J. A. Arnaud and C. Neck, "Apparatus for locating and measuring the beam-waist radius of a Gaussian laser beam," U.S. patent 3,617,755 (2 November 1971).

Aussenegg, F. R.

Baba, T.

T. Baba, T. Arai, and A. Ono, "Laser beam profile measurement by a thermographic technique," Rev. Sci. Instrum. 57, 2739-2742 (1986).
[CrossRef]

Brannon, P. J.

P. J. Brannon, J. P. Anthes, G. L. Cano, and J. E. Powell, "Laser focal spot measurements," J. Appl. Phys. 46, 3576-3579 (1975).
[CrossRef]

Cano, G. L.

P. J. Brannon, J. P. Anthes, G. L. Cano, and J. E. Powell, "Laser focal spot measurements," J. Appl. Phys. 46, 3576-3579 (1975).
[CrossRef]

de la Clavière, B.

Ditlbacher, H.

Franke, E. A.

Franke, J. M.

Ghauri, F. N.

N. A. Riza and F. N. Ghauri, "Super resolution hybrid analog-digital optical beam profiler using digital micromirror device," IEEE Photon. Technol. Lett. 17, 1492-1494 (2005).
[CrossRef]

Giles, M. K.

M. K. Giles and E. M. Kim, "Linear systems approach to fiber characterization using beam profile measurements," in Fiber Optics: Short-Haul and Long-Haul Measurements and Applications II, R.L.Galawa, ed., Proc. SPIE 500,67-70 (1984).

Granneman, E. H. A.

E. H. A. Granneman and M. J. van der Wiel, "Laser beam waist determination by means of multiphoton ionization," Rev. Sci. Instrum. 46, 332-334 (1975).
[CrossRef]

Gupta, R.

Hubbard, W. M.

Johnston, T. F.

T. F. Johnston and G. H. Williams, "Apparatus for measuring the mode quality of a laser beam," U.S. patent 5,064,284 (12 November 1991).

Jorgesen, D.

Kim, E. M.

M. K. Giles and E. M. Kim, "Linear systems approach to fiber characterization using beam profile measurements," in Fiber Optics: Short-Haul and Long-Haul Measurements and Applications II, R.L.Galawa, ed., Proc. SPIE 500,67-70 (1984).

Klein, M. P.

S. M. Sorscher and M. P. Klein, "Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy," Rev. Sci. Instrum. 51, 98-102 (1980).
[CrossRef]

Krenn, J. R.

Leitner, A.

Mandeville, G. D.

Mughal, M. J.

N. A. Riza and M. J. Mughal, "Optical power independent optical beam profiler," Opt. Eng. 43, 793-797 (2004).
[CrossRef]

Neck, C.

J. A. Arnaud and C. Neck, "Apparatus for locating and measuring the beam-waist radius of a Gaussian laser beam," U.S. patent 3,617,755 (2 November 1971).

Nie, Y. X.

Ono, A.

T. Baba, T. Arai, and A. Ono, "Laser beam profile measurement by a thermographic technique," Rev. Sci. Instrum. 57, 2739-2742 (1986).
[CrossRef]

Powell, J. E.

P. J. Brannon, J. P. Anthes, G. L. Cano, and J. E. Powell, "Laser focal spot measurements," J. Appl. Phys. 46, 3576-3579 (1975).
[CrossRef]

Riza, N. A.

N. A. Riza and F. N. Ghauri, "Super resolution hybrid analog-digital optical beam profiler using digital micromirror device," IEEE Photon. Technol. Lett. 17, 1492-1494 (2005).
[CrossRef]

N. A. Riza and D. Jorgesen, "Minimally invasive optical beam profiler," Opt. Express 12, 1892-1901 (2004).
[CrossRef] [PubMed]

N. A. Riza and M. J. Mughal, "Optical power independent optical beam profiler," Opt. Eng. 43, 793-797 (2004).
[CrossRef]

S. Sumriddetchkajorn and N. A. Riza, "Micro-electro-mechanical system-based digitally controlled optical beam profiler," Appl. Opt. 41, 3506-3510 (2002).
[CrossRef] [PubMed]

N. A. Riza, "Digital optical beam profiler," U.S. patent 6,922,233 B2 (26 July 2005).

Rose, A.

Shayler, P. J.

Sorscher, S. M.

S. M. Sorscher and M. P. Klein, "Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy," Rev. Sci. Instrum. 51, 98-102 (1980).
[CrossRef]

Sumriddetchkajorn, S.

van der Wiel, M. J.

E. H. A. Granneman and M. J. van der Wiel, "Laser beam waist determination by means of multiphoton ionization," Rev. Sci. Instrum. 46, 332-334 (1975).
[CrossRef]

Wang, C. P.

Williams, G. H.

T. F. Johnston and G. H. Williams, "Apparatus for measuring the mode quality of a laser beam," U.S. patent 5,064,284 (12 November 1991).

Appl. Opt. (5)

IEEE Photon. Technol. Lett. (1)

N. A. Riza and F. N. Ghauri, "Super resolution hybrid analog-digital optical beam profiler using digital micromirror device," IEEE Photon. Technol. Lett. 17, 1492-1494 (2005).
[CrossRef]

J. Appl. Phys. (1)

P. J. Brannon, J. P. Anthes, G. L. Cano, and J. E. Powell, "Laser focal spot measurements," J. Appl. Phys. 46, 3576-3579 (1975).
[CrossRef]

Opt. Eng. (1)

N. A. Riza and M. J. Mughal, "Optical power independent optical beam profiler," Opt. Eng. 43, 793-797 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (3)

E. H. A. Granneman and M. J. van der Wiel, "Laser beam waist determination by means of multiphoton ionization," Rev. Sci. Instrum. 46, 332-334 (1975).
[CrossRef]

S. M. Sorscher and M. P. Klein, "Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy," Rev. Sci. Instrum. 51, 98-102 (1980).
[CrossRef]

T. Baba, T. Arai, and A. Ono, "Laser beam profile measurement by a thermographic technique," Rev. Sci. Instrum. 57, 2739-2742 (1986).
[CrossRef]

Other (4)

N. A. Riza, "Digital optical beam profiler," U.S. patent 6,922,233 B2 (26 July 2005).

M. K. Giles and E. M. Kim, "Linear systems approach to fiber characterization using beam profile measurements," in Fiber Optics: Short-Haul and Long-Haul Measurements and Applications II, R.L.Galawa, ed., Proc. SPIE 500,67-70 (1984).

J. A. Arnaud and C. Neck, "Apparatus for locating and measuring the beam-waist radius of a Gaussian laser beam," U.S. patent 3,617,755 (2 November 1971).

T. F. Johnston and G. H. Williams, "Apparatus for measuring the mode quality of a laser beam," U.S. patent 5,064,284 (12 November 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Proposed LCD-based no-moving-parts beam profiler. PC, computer unit.

Fig. 2
Fig. 2

Proposed beam divergence measurement system using the LCD profiler. MBWL, minimum beam-waist location.

Fig. 3
Fig. 3

Laser beam divergence angle θ computation from the Gaussian beam-waist differences along the optical axis.

Fig. 4
Fig. 4

Layout of RGB subpixels and RGB pixels for the LCD used in the experiment.

Fig. 5
Fig. 5

One-dimensional knife-edge profiling implemented along the x direction using the computer-programmed LCD window construction and motion that shifts the knife-edge position. Shown are three example LCD images during 1D knife-edge profiling operations.

Fig. 6
Fig. 6

(Color online) Data acquired when performing the knife-edge experiment in the x direction (dotted curve) and using the best-fitting error function (solid curve).

Fig. 7
Fig. 7

(Color online) x-direction Gaussian intensity distribution computed using parameters from the best-fitting error function obtained in Fig. 6.

Fig. 8
Fig. 8

One-dimensional knife-edge profiling implemented along the y direction using the computer-programmed LCD window construction and motion that shifts the knife-edge position. Shown are three example LCD images during 1D knife-edge profiling operations.

Fig. 9
Fig. 9

(Color online) Data acquired when performing the knife-edge experiment in the y direction (dotted curve) and using the best-fitting error function (solid curve).

Fig. 10
Fig. 10

(Color online) y-direction Gaussian intensity distribution computed using parameters from the best-fitting error function obtained in Fig. 9.

Fig. 11
Fig. 11

(Color online) Two-dimensional profile obtained from the x- and y-direction 1D fitted profiles: (a) gradient view and (b) spatial view.

Fig. 12
Fig. 12

Pinhole profiling steps using the LCD profiler showing three typical LCD images during profiling.

Fig. 13
Fig. 13

(Color online) Two-dimensional profile obtained from the pinhole experiment: (a) gradient view and (b) spatial view.

Fig. 14
Fig. 14

Proposed FSO laser communication link using built-in LCD-based profilers that enable inherent link beam alignment and divergence measurements; P, processor.

Tables (1)

Tables Icon

Table 1 Example Cost of Commercial LCD Panels and Kits

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q = Q 0 + P 0 2 { erf [ 2 ( x x 0 ) ω ] 1 } ,

Metrics