Abstract

A novel thin-filament pyrometer is presented. It involves a consumer-grade color digital still camera with 6 megapixels and 12 bits per color plane. SiC fibers were used and scanning-electron microscopy found them to be uniform with diameters of 13.9 μm. Measurements were performed in a methane-air coflowing laminar jet diffusion flame with a luminosity length of 72 mm. Calibration of the pyrometer was accomplished with B-type thermocouples. The pyrometry measurements yielded gas temperatures in the range of 1400-2200 K with an estimated uncertainty of ±60 K, a relative temperature resolution of ±0.215 K, a spatial resolution of 42 μm, and a temporal resolution of 0.66 ms. Fiber aging for 10 min had no effect on the results. Soot deposition was less problematic for the pyrometer than for the thermocouple.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Vilimpoc and L. P. Goss, "SiC-based thin-filament pyrometry: theory and thermal properties," Proc. Combust. Inst. 22, 1907-1914 (1988).
  2. V. Vilimpoc, L. P. Goss, and B. Sarka, "Spatial temperature-profile measurements by the thin-filament-pyrometry technique," Opt. Lett. 13, 93-95 (1988).
  3. L. P. Goss, V. Vilimpoc, B. Sarka, and W. F. Lynn, "Thin-filament pyrometry: a novel thermometric technique for combusting flows," J. Eng. Gas Turbines Power 111, 46-52 (1989).
  4. C. R. Ferguson and J. C. Keck, "Hot-wire pyrometry," J. Appl. Phys. 49, 3031-3032 (1978).
    [CrossRef]
  5. L. G. Blevins, M. W. Renfro, K. H. Lyle, N. M. Laurendeau, and J. P. Gore, "Experimental study of temperature and CH radical location in partially premixed CH4/air coflow flames," Combust. Flame 118, 684-696 (1999).
    [CrossRef]
  6. R. V. Ravikrishna and N. M. Laurendeau, "Laser-induced fluorescence measurements and modeling of nitric oxide in methane-air and ethane-air counter-flow diffusion flames," Combust. Flame 122, 474-482 (2000).
    [CrossRef]
  7. J. Ji, Y. R. Sivathanu, and J. P. Gore, "Thin filament pyrometry for flame measurements," Proc. Combust. Inst. 28, 391-398 (2000).
  8. S. D. Marcum and B. N. Ganguly, "Electric-field-induced flame speed modification," Combust. Flame 143, 27-36 (2005).
    [CrossRef]
  9. B. Bédat, A. Giovannini, and S. Pauzin, "Thin filament infrared pyrometry: instantaneous temperature profile measurements in a weakly turbulent hydrocarbon premixed flame," Exp. Fluids 17, 397-404 (1994).
    [CrossRef]
  10. W. M. Pitts, "Thin-filament pyrometry in flickering laminar diffusion flames," Proc. Combust. Inst. 26, 1171-1179 (1996).
  11. W. M. Pitts, K. C. Smyth, and D. A. Everest, "Effects of finite time response and soot deposition on thin filament pyrometry measurements in time-varying diffusion flames," Proc. Combust. Inst. 27, 563-569 (1998).
  12. P. Struk, D. Dietrich, R. Valentine, and I. Feier, "Comparisons of gas-phase temperature measurements in a flame using thin-filament pyrometry and thermocouples," in Proceedings of the American Institute of Aeronautics and Astronautics 41st Meeting (AIAA, 2003).
  13. S. H. Shim and H. D. Shin, "Application of thin SiC filaments to the study of coflowing, propane/air diffusion flames: a review of soot inception," Combust. Sci. Tech. 175, 207-223 (2003).
    [CrossRef]
  14. M. Bundy, A. Hamins, and K. Y. Lee, "Suppression limits of low strain rate non-premixed methane flames," Combust. Flame 133, 299-310 (2003).
    [CrossRef]
  15. B. C. Connelly, S. A. Kaiser, M. D. Smooke, and M. B. Long, "Two-dimensional soot pyrometry with a color digital camera," in Proceedings of the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, 2005).
  16. J. D. Maun, "Thin-filament pyrometry with a digital still camera," M.S. thesis (University of Maryland, 2006).
  17. R. B. Klimek, T. W. Wright, and R. S. Sielken, Color Image Processing and Object Tracking System, NASA Technical Memorandum 107144 (NASA Lewis Research Center, 1996).
  18. P. B. Sunderland, R. L. Axelbaum, D. L. Urban, B. H. Chao, and S. Liu, "Effects of structure and hydrodynamics of the sooting behavior of spherical microgravity diffusion flames," Combust. Flame 132, 25-33 (2003).
    [CrossRef]
  19. D. Bradley and A. G. Entwistle, "Determination of the emissivity, for total radiation, of small diameter platinum-10% rhodium wires in the temperature range 600-1450 °C," B. J. Appl. Phys. 12, 708-711 (1961).
    [CrossRef]
  20. S. Nakai and T. Okazaki, "Heat transfer from a horizontal circular wire at small Reynolds and Grashof numbers--I pure convection," Int. J. Heat Mass Transfer 18, 387-396 (1975).
    [CrossRef]
  21. R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, "The transport and growth of soot particles in laminar diffusion flames," Combust. Sci. Technol. 53, 89-115 (1987).
  22. P. B. Sunderland and G. M. Faeth, "Soot formation in hydrocarbon/air laminar jet diffusion flames," Combust. Flame 105, 132-146 (1996).
    [CrossRef]
  23. B. Lewis and G. von Elbe, Combustion, Flames and Explosions of Gases (Academic, 1987), p. 720.

2005 (1)

S. D. Marcum and B. N. Ganguly, "Electric-field-induced flame speed modification," Combust. Flame 143, 27-36 (2005).
[CrossRef]

2003 (3)

S. H. Shim and H. D. Shin, "Application of thin SiC filaments to the study of coflowing, propane/air diffusion flames: a review of soot inception," Combust. Sci. Tech. 175, 207-223 (2003).
[CrossRef]

M. Bundy, A. Hamins, and K. Y. Lee, "Suppression limits of low strain rate non-premixed methane flames," Combust. Flame 133, 299-310 (2003).
[CrossRef]

P. B. Sunderland, R. L. Axelbaum, D. L. Urban, B. H. Chao, and S. Liu, "Effects of structure and hydrodynamics of the sooting behavior of spherical microgravity diffusion flames," Combust. Flame 132, 25-33 (2003).
[CrossRef]

2000 (2)

R. V. Ravikrishna and N. M. Laurendeau, "Laser-induced fluorescence measurements and modeling of nitric oxide in methane-air and ethane-air counter-flow diffusion flames," Combust. Flame 122, 474-482 (2000).
[CrossRef]

J. Ji, Y. R. Sivathanu, and J. P. Gore, "Thin filament pyrometry for flame measurements," Proc. Combust. Inst. 28, 391-398 (2000).

1999 (1)

L. G. Blevins, M. W. Renfro, K. H. Lyle, N. M. Laurendeau, and J. P. Gore, "Experimental study of temperature and CH radical location in partially premixed CH4/air coflow flames," Combust. Flame 118, 684-696 (1999).
[CrossRef]

1998 (1)

W. M. Pitts, K. C. Smyth, and D. A. Everest, "Effects of finite time response and soot deposition on thin filament pyrometry measurements in time-varying diffusion flames," Proc. Combust. Inst. 27, 563-569 (1998).

1996 (2)

W. M. Pitts, "Thin-filament pyrometry in flickering laminar diffusion flames," Proc. Combust. Inst. 26, 1171-1179 (1996).

P. B. Sunderland and G. M. Faeth, "Soot formation in hydrocarbon/air laminar jet diffusion flames," Combust. Flame 105, 132-146 (1996).
[CrossRef]

1994 (1)

B. Bédat, A. Giovannini, and S. Pauzin, "Thin filament infrared pyrometry: instantaneous temperature profile measurements in a weakly turbulent hydrocarbon premixed flame," Exp. Fluids 17, 397-404 (1994).
[CrossRef]

1989 (1)

L. P. Goss, V. Vilimpoc, B. Sarka, and W. F. Lynn, "Thin-filament pyrometry: a novel thermometric technique for combusting flows," J. Eng. Gas Turbines Power 111, 46-52 (1989).

1988 (2)

V. Vilimpoc and L. P. Goss, "SiC-based thin-filament pyrometry: theory and thermal properties," Proc. Combust. Inst. 22, 1907-1914 (1988).

V. Vilimpoc, L. P. Goss, and B. Sarka, "Spatial temperature-profile measurements by the thin-filament-pyrometry technique," Opt. Lett. 13, 93-95 (1988).

1987 (1)

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, "The transport and growth of soot particles in laminar diffusion flames," Combust. Sci. Technol. 53, 89-115 (1987).

1978 (1)

C. R. Ferguson and J. C. Keck, "Hot-wire pyrometry," J. Appl. Phys. 49, 3031-3032 (1978).
[CrossRef]

1975 (1)

S. Nakai and T. Okazaki, "Heat transfer from a horizontal circular wire at small Reynolds and Grashof numbers--I pure convection," Int. J. Heat Mass Transfer 18, 387-396 (1975).
[CrossRef]

1961 (1)

D. Bradley and A. G. Entwistle, "Determination of the emissivity, for total radiation, of small diameter platinum-10% rhodium wires in the temperature range 600-1450 °C," B. J. Appl. Phys. 12, 708-711 (1961).
[CrossRef]

Axelbaum, R. L.

P. B. Sunderland, R. L. Axelbaum, D. L. Urban, B. H. Chao, and S. Liu, "Effects of structure and hydrodynamics of the sooting behavior of spherical microgravity diffusion flames," Combust. Flame 132, 25-33 (2003).
[CrossRef]

Bédat, B.

B. Bédat, A. Giovannini, and S. Pauzin, "Thin filament infrared pyrometry: instantaneous temperature profile measurements in a weakly turbulent hydrocarbon premixed flame," Exp. Fluids 17, 397-404 (1994).
[CrossRef]

Blevins, L. G.

L. G. Blevins, M. W. Renfro, K. H. Lyle, N. M. Laurendeau, and J. P. Gore, "Experimental study of temperature and CH radical location in partially premixed CH4/air coflow flames," Combust. Flame 118, 684-696 (1999).
[CrossRef]

Bradley, D.

D. Bradley and A. G. Entwistle, "Determination of the emissivity, for total radiation, of small diameter platinum-10% rhodium wires in the temperature range 600-1450 °C," B. J. Appl. Phys. 12, 708-711 (1961).
[CrossRef]

Bundy, M.

M. Bundy, A. Hamins, and K. Y. Lee, "Suppression limits of low strain rate non-premixed methane flames," Combust. Flame 133, 299-310 (2003).
[CrossRef]

Chao, B. H.

P. B. Sunderland, R. L. Axelbaum, D. L. Urban, B. H. Chao, and S. Liu, "Effects of structure and hydrodynamics of the sooting behavior of spherical microgravity diffusion flames," Combust. Flame 132, 25-33 (2003).
[CrossRef]

Connelly, B. C.

B. C. Connelly, S. A. Kaiser, M. D. Smooke, and M. B. Long, "Two-dimensional soot pyrometry with a color digital camera," in Proceedings of the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, 2005).

Dietrich, D.

P. Struk, D. Dietrich, R. Valentine, and I. Feier, "Comparisons of gas-phase temperature measurements in a flame using thin-filament pyrometry and thermocouples," in Proceedings of the American Institute of Aeronautics and Astronautics 41st Meeting (AIAA, 2003).

Entwistle, A. G.

D. Bradley and A. G. Entwistle, "Determination of the emissivity, for total radiation, of small diameter platinum-10% rhodium wires in the temperature range 600-1450 °C," B. J. Appl. Phys. 12, 708-711 (1961).
[CrossRef]

Everest, D. A.

W. M. Pitts, K. C. Smyth, and D. A. Everest, "Effects of finite time response and soot deposition on thin filament pyrometry measurements in time-varying diffusion flames," Proc. Combust. Inst. 27, 563-569 (1998).

Faeth, G. M.

P. B. Sunderland and G. M. Faeth, "Soot formation in hydrocarbon/air laminar jet diffusion flames," Combust. Flame 105, 132-146 (1996).
[CrossRef]

Feier, I.

P. Struk, D. Dietrich, R. Valentine, and I. Feier, "Comparisons of gas-phase temperature measurements in a flame using thin-filament pyrometry and thermocouples," in Proceedings of the American Institute of Aeronautics and Astronautics 41st Meeting (AIAA, 2003).

Ferguson, C. R.

C. R. Ferguson and J. C. Keck, "Hot-wire pyrometry," J. Appl. Phys. 49, 3031-3032 (1978).
[CrossRef]

Ganguly, B. N.

S. D. Marcum and B. N. Ganguly, "Electric-field-induced flame speed modification," Combust. Flame 143, 27-36 (2005).
[CrossRef]

Giovannini, A.

B. Bédat, A. Giovannini, and S. Pauzin, "Thin filament infrared pyrometry: instantaneous temperature profile measurements in a weakly turbulent hydrocarbon premixed flame," Exp. Fluids 17, 397-404 (1994).
[CrossRef]

Gore, J. P.

J. Ji, Y. R. Sivathanu, and J. P. Gore, "Thin filament pyrometry for flame measurements," Proc. Combust. Inst. 28, 391-398 (2000).

L. G. Blevins, M. W. Renfro, K. H. Lyle, N. M. Laurendeau, and J. P. Gore, "Experimental study of temperature and CH radical location in partially premixed CH4/air coflow flames," Combust. Flame 118, 684-696 (1999).
[CrossRef]

Goss, L. P.

L. P. Goss, V. Vilimpoc, B. Sarka, and W. F. Lynn, "Thin-filament pyrometry: a novel thermometric technique for combusting flows," J. Eng. Gas Turbines Power 111, 46-52 (1989).

V. Vilimpoc and L. P. Goss, "SiC-based thin-filament pyrometry: theory and thermal properties," Proc. Combust. Inst. 22, 1907-1914 (1988).

V. Vilimpoc, L. P. Goss, and B. Sarka, "Spatial temperature-profile measurements by the thin-filament-pyrometry technique," Opt. Lett. 13, 93-95 (1988).

Hamins, A.

M. Bundy, A. Hamins, and K. Y. Lee, "Suppression limits of low strain rate non-premixed methane flames," Combust. Flame 133, 299-310 (2003).
[CrossRef]

Horvath, J. J.

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, "The transport and growth of soot particles in laminar diffusion flames," Combust. Sci. Technol. 53, 89-115 (1987).

Ji, J.

J. Ji, Y. R. Sivathanu, and J. P. Gore, "Thin filament pyrometry for flame measurements," Proc. Combust. Inst. 28, 391-398 (2000).

Kaiser, S. A.

B. C. Connelly, S. A. Kaiser, M. D. Smooke, and M. B. Long, "Two-dimensional soot pyrometry with a color digital camera," in Proceedings of the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, 2005).

Keck, J. C.

C. R. Ferguson and J. C. Keck, "Hot-wire pyrometry," J. Appl. Phys. 49, 3031-3032 (1978).
[CrossRef]

Klimek, R. B.

R. B. Klimek, T. W. Wright, and R. S. Sielken, Color Image Processing and Object Tracking System, NASA Technical Memorandum 107144 (NASA Lewis Research Center, 1996).

Laurendeau, N. M.

R. V. Ravikrishna and N. M. Laurendeau, "Laser-induced fluorescence measurements and modeling of nitric oxide in methane-air and ethane-air counter-flow diffusion flames," Combust. Flame 122, 474-482 (2000).
[CrossRef]

L. G. Blevins, M. W. Renfro, K. H. Lyle, N. M. Laurendeau, and J. P. Gore, "Experimental study of temperature and CH radical location in partially premixed CH4/air coflow flames," Combust. Flame 118, 684-696 (1999).
[CrossRef]

Lee, K. Y.

M. Bundy, A. Hamins, and K. Y. Lee, "Suppression limits of low strain rate non-premixed methane flames," Combust. Flame 133, 299-310 (2003).
[CrossRef]

Lewis, B.

B. Lewis and G. von Elbe, Combustion, Flames and Explosions of Gases (Academic, 1987), p. 720.

Liu, S.

P. B. Sunderland, R. L. Axelbaum, D. L. Urban, B. H. Chao, and S. Liu, "Effects of structure and hydrodynamics of the sooting behavior of spherical microgravity diffusion flames," Combust. Flame 132, 25-33 (2003).
[CrossRef]

Long, M. B.

B. C. Connelly, S. A. Kaiser, M. D. Smooke, and M. B. Long, "Two-dimensional soot pyrometry with a color digital camera," in Proceedings of the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, 2005).

Lyle, K. H.

L. G. Blevins, M. W. Renfro, K. H. Lyle, N. M. Laurendeau, and J. P. Gore, "Experimental study of temperature and CH radical location in partially premixed CH4/air coflow flames," Combust. Flame 118, 684-696 (1999).
[CrossRef]

Lynn, W. F.

L. P. Goss, V. Vilimpoc, B. Sarka, and W. F. Lynn, "Thin-filament pyrometry: a novel thermometric technique for combusting flows," J. Eng. Gas Turbines Power 111, 46-52 (1989).

Marcum, S. D.

S. D. Marcum and B. N. Ganguly, "Electric-field-induced flame speed modification," Combust. Flame 143, 27-36 (2005).
[CrossRef]

Maun, J. D.

J. D. Maun, "Thin-filament pyrometry with a digital still camera," M.S. thesis (University of Maryland, 2006).

Nakai, S.

S. Nakai and T. Okazaki, "Heat transfer from a horizontal circular wire at small Reynolds and Grashof numbers--I pure convection," Int. J. Heat Mass Transfer 18, 387-396 (1975).
[CrossRef]

Okazaki, T.

S. Nakai and T. Okazaki, "Heat transfer from a horizontal circular wire at small Reynolds and Grashof numbers--I pure convection," Int. J. Heat Mass Transfer 18, 387-396 (1975).
[CrossRef]

Pauzin, S.

B. Bédat, A. Giovannini, and S. Pauzin, "Thin filament infrared pyrometry: instantaneous temperature profile measurements in a weakly turbulent hydrocarbon premixed flame," Exp. Fluids 17, 397-404 (1994).
[CrossRef]

Pitts, W. M.

W. M. Pitts, K. C. Smyth, and D. A. Everest, "Effects of finite time response and soot deposition on thin filament pyrometry measurements in time-varying diffusion flames," Proc. Combust. Inst. 27, 563-569 (1998).

W. M. Pitts, "Thin-filament pyrometry in flickering laminar diffusion flames," Proc. Combust. Inst. 26, 1171-1179 (1996).

Ravikrishna, R. V.

R. V. Ravikrishna and N. M. Laurendeau, "Laser-induced fluorescence measurements and modeling of nitric oxide in methane-air and ethane-air counter-flow diffusion flames," Combust. Flame 122, 474-482 (2000).
[CrossRef]

Renfro, M. W.

L. G. Blevins, M. W. Renfro, K. H. Lyle, N. M. Laurendeau, and J. P. Gore, "Experimental study of temperature and CH radical location in partially premixed CH4/air coflow flames," Combust. Flame 118, 684-696 (1999).
[CrossRef]

Santoro, R. J.

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, "The transport and growth of soot particles in laminar diffusion flames," Combust. Sci. Technol. 53, 89-115 (1987).

Sarka, B.

L. P. Goss, V. Vilimpoc, B. Sarka, and W. F. Lynn, "Thin-filament pyrometry: a novel thermometric technique for combusting flows," J. Eng. Gas Turbines Power 111, 46-52 (1989).

V. Vilimpoc, L. P. Goss, and B. Sarka, "Spatial temperature-profile measurements by the thin-filament-pyrometry technique," Opt. Lett. 13, 93-95 (1988).

Semerjian, H. G.

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, "The transport and growth of soot particles in laminar diffusion flames," Combust. Sci. Technol. 53, 89-115 (1987).

Shim, S. H.

S. H. Shim and H. D. Shin, "Application of thin SiC filaments to the study of coflowing, propane/air diffusion flames: a review of soot inception," Combust. Sci. Tech. 175, 207-223 (2003).
[CrossRef]

Shin, H. D.

S. H. Shim and H. D. Shin, "Application of thin SiC filaments to the study of coflowing, propane/air diffusion flames: a review of soot inception," Combust. Sci. Tech. 175, 207-223 (2003).
[CrossRef]

Sielken, R. S.

R. B. Klimek, T. W. Wright, and R. S. Sielken, Color Image Processing and Object Tracking System, NASA Technical Memorandum 107144 (NASA Lewis Research Center, 1996).

Sivathanu, Y. R.

J. Ji, Y. R. Sivathanu, and J. P. Gore, "Thin filament pyrometry for flame measurements," Proc. Combust. Inst. 28, 391-398 (2000).

Smooke, M. D.

B. C. Connelly, S. A. Kaiser, M. D. Smooke, and M. B. Long, "Two-dimensional soot pyrometry with a color digital camera," in Proceedings of the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, 2005).

Smyth, K. C.

W. M. Pitts, K. C. Smyth, and D. A. Everest, "Effects of finite time response and soot deposition on thin filament pyrometry measurements in time-varying diffusion flames," Proc. Combust. Inst. 27, 563-569 (1998).

Struk, P.

P. Struk, D. Dietrich, R. Valentine, and I. Feier, "Comparisons of gas-phase temperature measurements in a flame using thin-filament pyrometry and thermocouples," in Proceedings of the American Institute of Aeronautics and Astronautics 41st Meeting (AIAA, 2003).

Sunderland, P. B.

P. B. Sunderland, R. L. Axelbaum, D. L. Urban, B. H. Chao, and S. Liu, "Effects of structure and hydrodynamics of the sooting behavior of spherical microgravity diffusion flames," Combust. Flame 132, 25-33 (2003).
[CrossRef]

P. B. Sunderland and G. M. Faeth, "Soot formation in hydrocarbon/air laminar jet diffusion flames," Combust. Flame 105, 132-146 (1996).
[CrossRef]

Urban, D. L.

P. B. Sunderland, R. L. Axelbaum, D. L. Urban, B. H. Chao, and S. Liu, "Effects of structure and hydrodynamics of the sooting behavior of spherical microgravity diffusion flames," Combust. Flame 132, 25-33 (2003).
[CrossRef]

Valentine, R.

P. Struk, D. Dietrich, R. Valentine, and I. Feier, "Comparisons of gas-phase temperature measurements in a flame using thin-filament pyrometry and thermocouples," in Proceedings of the American Institute of Aeronautics and Astronautics 41st Meeting (AIAA, 2003).

Vilimpoc, V.

L. P. Goss, V. Vilimpoc, B. Sarka, and W. F. Lynn, "Thin-filament pyrometry: a novel thermometric technique for combusting flows," J. Eng. Gas Turbines Power 111, 46-52 (1989).

V. Vilimpoc and L. P. Goss, "SiC-based thin-filament pyrometry: theory and thermal properties," Proc. Combust. Inst. 22, 1907-1914 (1988).

V. Vilimpoc, L. P. Goss, and B. Sarka, "Spatial temperature-profile measurements by the thin-filament-pyrometry technique," Opt. Lett. 13, 93-95 (1988).

von Elbe, G.

B. Lewis and G. von Elbe, Combustion, Flames and Explosions of Gases (Academic, 1987), p. 720.

Wright, T. W.

R. B. Klimek, T. W. Wright, and R. S. Sielken, Color Image Processing and Object Tracking System, NASA Technical Memorandum 107144 (NASA Lewis Research Center, 1996).

Yeh, T. T.

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, "The transport and growth of soot particles in laminar diffusion flames," Combust. Sci. Technol. 53, 89-115 (1987).

B. J. Appl. Phys. (1)

D. Bradley and A. G. Entwistle, "Determination of the emissivity, for total radiation, of small diameter platinum-10% rhodium wires in the temperature range 600-1450 °C," B. J. Appl. Phys. 12, 708-711 (1961).
[CrossRef]

Combust. Flame (6)

P. B. Sunderland and G. M. Faeth, "Soot formation in hydrocarbon/air laminar jet diffusion flames," Combust. Flame 105, 132-146 (1996).
[CrossRef]

S. D. Marcum and B. N. Ganguly, "Electric-field-induced flame speed modification," Combust. Flame 143, 27-36 (2005).
[CrossRef]

M. Bundy, A. Hamins, and K. Y. Lee, "Suppression limits of low strain rate non-premixed methane flames," Combust. Flame 133, 299-310 (2003).
[CrossRef]

L. G. Blevins, M. W. Renfro, K. H. Lyle, N. M. Laurendeau, and J. P. Gore, "Experimental study of temperature and CH radical location in partially premixed CH4/air coflow flames," Combust. Flame 118, 684-696 (1999).
[CrossRef]

R. V. Ravikrishna and N. M. Laurendeau, "Laser-induced fluorescence measurements and modeling of nitric oxide in methane-air and ethane-air counter-flow diffusion flames," Combust. Flame 122, 474-482 (2000).
[CrossRef]

P. B. Sunderland, R. L. Axelbaum, D. L. Urban, B. H. Chao, and S. Liu, "Effects of structure and hydrodynamics of the sooting behavior of spherical microgravity diffusion flames," Combust. Flame 132, 25-33 (2003).
[CrossRef]

Combust. Sci. Tech. (1)

S. H. Shim and H. D. Shin, "Application of thin SiC filaments to the study of coflowing, propane/air diffusion flames: a review of soot inception," Combust. Sci. Tech. 175, 207-223 (2003).
[CrossRef]

Combust. Sci. Technol. (1)

R. J. Santoro, T. T. Yeh, J. J. Horvath, and H. G. Semerjian, "The transport and growth of soot particles in laminar diffusion flames," Combust. Sci. Technol. 53, 89-115 (1987).

Exp. Fluids (1)

B. Bédat, A. Giovannini, and S. Pauzin, "Thin filament infrared pyrometry: instantaneous temperature profile measurements in a weakly turbulent hydrocarbon premixed flame," Exp. Fluids 17, 397-404 (1994).
[CrossRef]

Int. J. Heat Mass Transfer (1)

S. Nakai and T. Okazaki, "Heat transfer from a horizontal circular wire at small Reynolds and Grashof numbers--I pure convection," Int. J. Heat Mass Transfer 18, 387-396 (1975).
[CrossRef]

J. Appl. Phys. (1)

C. R. Ferguson and J. C. Keck, "Hot-wire pyrometry," J. Appl. Phys. 49, 3031-3032 (1978).
[CrossRef]

J. Eng. Gas Turbines Power (1)

L. P. Goss, V. Vilimpoc, B. Sarka, and W. F. Lynn, "Thin-filament pyrometry: a novel thermometric technique for combusting flows," J. Eng. Gas Turbines Power 111, 46-52 (1989).

Opt. Lett. (1)

Proc. Combust. Inst. (4)

V. Vilimpoc and L. P. Goss, "SiC-based thin-filament pyrometry: theory and thermal properties," Proc. Combust. Inst. 22, 1907-1914 (1988).

W. M. Pitts, "Thin-filament pyrometry in flickering laminar diffusion flames," Proc. Combust. Inst. 26, 1171-1179 (1996).

W. M. Pitts, K. C. Smyth, and D. A. Everest, "Effects of finite time response and soot deposition on thin filament pyrometry measurements in time-varying diffusion flames," Proc. Combust. Inst. 27, 563-569 (1998).

J. Ji, Y. R. Sivathanu, and J. P. Gore, "Thin filament pyrometry for flame measurements," Proc. Combust. Inst. 28, 391-398 (2000).

Other (5)

B. C. Connelly, S. A. Kaiser, M. D. Smooke, and M. B. Long, "Two-dimensional soot pyrometry with a color digital camera," in Proceedings of the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute (Combustion Institute, 2005).

J. D. Maun, "Thin-filament pyrometry with a digital still camera," M.S. thesis (University of Maryland, 2006).

R. B. Klimek, T. W. Wright, and R. S. Sielken, Color Image Processing and Object Tracking System, NASA Technical Memorandum 107144 (NASA Lewis Research Center, 1996).

P. Struk, D. Dietrich, R. Valentine, and I. Feier, "Comparisons of gas-phase temperature measurements in a flame using thin-filament pyrometry and thermocouples," in Proceedings of the American Institute of Aeronautics and Astronautics 41st Meeting (AIAA, 2003).

B. Lewis and G. von Elbe, Combustion, Flames and Explosions of Gases (Academic, 1987), p. 720.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics