Abstract

A thin film of electron-trapping material (ETM), when combined with suitable optical bistability, is considered as a medium for optical implementation of bioinspired neural nets. The optical mechanism of ETM under blue light and near-infrared exposure has the inherent ability at the material level to mimic the crucial components of the stylized Hodgkin-Huxley model of biological neurons. Combining this unique property with the high-resolution capability of ETM, a dense network of bioinspired neurons can be realized in a thin film of this infrared stimulable storage phosphor. When combined with suitable optical bistability and optical interconnectivity, it has the potential of producing an artificial nonlinear excitable medium analog to cortical tissue.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, Williams and Wilkins, 2001).
  2. T. P. Trappenberg, Fundamentals of Computational Neuroscience (Oxford U. Press, 2001).
  3. S. Prange and H. Klar, Neurobionics: an Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System, H. Both, M. Sami, and R. Eckmiller, eds. (Elsevier, 1993), p. 225.
  4. S. Jutamulia, G. Stori, J. Lindmayer, and W. Seiderman, "Use of electron trapping materials in optical signal processing. 1: Parallel Boolean logic," Appl. Opt. 29, 4806-4811 (1990).
  5. Z. Wen and N. Farhat, "Optoelectronic neural dendritic tree processing with electron-trapping materials," Opt. Lett. 20, 614-616 (1995).
  6. Z. Wen and N. Farhat, "Pulsating neuron produced by electron trapping materials," Opt. Lett. 19, 1394-1396 (1994).
  7. A. D. McAulay, J. Wang, and C. T. Ma, "Optical dynamic matched filtering with electron trapping devices," Proc. SPIE 977, 271-276 (1988).
  8. S. Jutamulia, G. Stori, J. Lindmayer, and W. Seiderman, "Use of electron trapping materials in optical signal processing. 2: two-dimensional associative memory," Appl. Opt. 30, 2879-2884 (1991).
  9. A. D. McAulay, J. Wang, and C. T. Ma, "Optical orthogonal neural network associative memory with luminescence rebroadcasting devices," in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1989), 2, 483-485.
  10. F. Itoh, K. Kitayama, and Y. Tamura, "Optical outer-product learning in a neural network using optically stimulable phosphor," Opt. Lett. 15, 860-862 (1990).
  11. J. Lindmayer, "A new erasable optical memory," Solid State Technol. 31, 135-138 (1988).
  12. J. Lindmayer, P. Goldmith, and K. Gross, "Electron-trapping optical technology--memory's next generation," Comput. Technol. Rev. 10, 37-42 (1990).
  13. R. Pashaie and N. H. Farhat, "Optical realization of the retinal ganglion receptive fields on the electron-trapping material thin film," 32nd Northeast Bioengineering Conference (IEEE, 2006), pp. 1-2.
  14. R. Pashaie and N. H. Farhat, "Realization of receptive fields with excitatory and inhibitory responses on the equilibrium-state luminescence of electron trapping material thin film," Opt. Lett. 32, 1501-1503 (2007).
  15. R. Pashaie and N. H. Farhat, "Dynamics of electron-trapping materials under blue light and near-infrared exposure: a new model," J. Opt. Soc. Am. B 24, 1927-1941 (2007).
  16. J. Huguenard and D. A. McCormick, Electrophysiology of the Neuron: an Iteractive Tutorial (Oxford U. Press, 1994).
  17. Z. Wen and N. Farhat, "Dynamics of electron trapping materials for use in optoelectronic neurocomputing," Appl. Opt. 32, 7251-7265 (1993).
  18. Z. Wen and N. Farhat, "Electron trapping materials and electron-beam-addressed electron trapping material devices: an improved model," Appl. Opt. 34, 5188-5198 (1995).
  19. A. L. Lentine and D. Miller, "Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels," IEEE J. Quantum Electron. 29, 655-669 (1993).
  20. The electron-trapping material used for this investigation was furnished by the former Quantex Corporation, Rockville, Md.
  21. G. Lee and N. H. Farhat, "The bifurcating neuron network 1," Neural Networks 14, 115-131 (2001).
  22. G. Lee and N. H. Farhat, "The bifurcating neuron network 2: an analog associative memory," Neural Networks 15, 69-84 (2002).
  23. Z. Hua, L. Salamanca-Riba, M. Wuttig, and P. K. Soltani, "Temperature dependence of photoluminescence in SrS: Eu2+, Sm3+ thin films," J. Opt. Soc. Am. B 10, 1464-1469 (1993).
  24. Opening of potassium ion channels during the repolarization is modeled by an α-function: α(t) = At exp(−t/τ), where A is the amplitude factor and τ is the time constant.

2007 (2)

2006 (1)

R. Pashaie and N. H. Farhat, "Optical realization of the retinal ganglion receptive fields on the electron-trapping material thin film," 32nd Northeast Bioengineering Conference (IEEE, 2006), pp. 1-2.

2002 (1)

G. Lee and N. H. Farhat, "The bifurcating neuron network 2: an analog associative memory," Neural Networks 15, 69-84 (2002).

2001 (3)

G. Lee and N. H. Farhat, "The bifurcating neuron network 1," Neural Networks 14, 115-131 (2001).

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, Williams and Wilkins, 2001).

T. P. Trappenberg, Fundamentals of Computational Neuroscience (Oxford U. Press, 2001).

1995 (2)

1994 (2)

Z. Wen and N. Farhat, "Pulsating neuron produced by electron trapping materials," Opt. Lett. 19, 1394-1396 (1994).

J. Huguenard and D. A. McCormick, Electrophysiology of the Neuron: an Iteractive Tutorial (Oxford U. Press, 1994).

1993 (4)

A. L. Lentine and D. Miller, "Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels," IEEE J. Quantum Electron. 29, 655-669 (1993).

S. Prange and H. Klar, Neurobionics: an Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System, H. Both, M. Sami, and R. Eckmiller, eds. (Elsevier, 1993), p. 225.

Z. Hua, L. Salamanca-Riba, M. Wuttig, and P. K. Soltani, "Temperature dependence of photoluminescence in SrS: Eu2+, Sm3+ thin films," J. Opt. Soc. Am. B 10, 1464-1469 (1993).

Z. Wen and N. Farhat, "Dynamics of electron trapping materials for use in optoelectronic neurocomputing," Appl. Opt. 32, 7251-7265 (1993).

1991 (1)

1990 (3)

1989 (1)

A. D. McAulay, J. Wang, and C. T. Ma, "Optical orthogonal neural network associative memory with luminescence rebroadcasting devices," in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1989), 2, 483-485.

1988 (2)

A. D. McAulay, J. Wang, and C. T. Ma, "Optical dynamic matched filtering with electron trapping devices," Proc. SPIE 977, 271-276 (1988).

J. Lindmayer, "A new erasable optical memory," Solid State Technol. 31, 135-138 (1988).

Bear, M. F.

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, Williams and Wilkins, 2001).

Connors, B. W.

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, Williams and Wilkins, 2001).

Farhat, N.

Farhat, N. H.

R. Pashaie and N. H. Farhat, "Realization of receptive fields with excitatory and inhibitory responses on the equilibrium-state luminescence of electron trapping material thin film," Opt. Lett. 32, 1501-1503 (2007).

R. Pashaie and N. H. Farhat, "Dynamics of electron-trapping materials under blue light and near-infrared exposure: a new model," J. Opt. Soc. Am. B 24, 1927-1941 (2007).

R. Pashaie and N. H. Farhat, "Optical realization of the retinal ganglion receptive fields on the electron-trapping material thin film," 32nd Northeast Bioengineering Conference (IEEE, 2006), pp. 1-2.

G. Lee and N. H. Farhat, "The bifurcating neuron network 2: an analog associative memory," Neural Networks 15, 69-84 (2002).

G. Lee and N. H. Farhat, "The bifurcating neuron network 1," Neural Networks 14, 115-131 (2001).

Goldmith, P.

J. Lindmayer, P. Goldmith, and K. Gross, "Electron-trapping optical technology--memory's next generation," Comput. Technol. Rev. 10, 37-42 (1990).

Gross, K.

J. Lindmayer, P. Goldmith, and K. Gross, "Electron-trapping optical technology--memory's next generation," Comput. Technol. Rev. 10, 37-42 (1990).

Hua, Z.

Huguenard, J.

J. Huguenard and D. A. McCormick, Electrophysiology of the Neuron: an Iteractive Tutorial (Oxford U. Press, 1994).

Itoh, F.

Jutamulia, S.

Kitayama, K.

Klar, H.

S. Prange and H. Klar, Neurobionics: an Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System, H. Both, M. Sami, and R. Eckmiller, eds. (Elsevier, 1993), p. 225.

Lee, G.

G. Lee and N. H. Farhat, "The bifurcating neuron network 2: an analog associative memory," Neural Networks 15, 69-84 (2002).

G. Lee and N. H. Farhat, "The bifurcating neuron network 1," Neural Networks 14, 115-131 (2001).

Lentine, A. L.

A. L. Lentine and D. Miller, "Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels," IEEE J. Quantum Electron. 29, 655-669 (1993).

Lindmayer, J.

Ma, C. T.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical orthogonal neural network associative memory with luminescence rebroadcasting devices," in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1989), 2, 483-485.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical dynamic matched filtering with electron trapping devices," Proc. SPIE 977, 271-276 (1988).

McAulay, A. D.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical orthogonal neural network associative memory with luminescence rebroadcasting devices," in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1989), 2, 483-485.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical dynamic matched filtering with electron trapping devices," Proc. SPIE 977, 271-276 (1988).

McCormick, D. A.

J. Huguenard and D. A. McCormick, Electrophysiology of the Neuron: an Iteractive Tutorial (Oxford U. Press, 1994).

Miller, D.

A. L. Lentine and D. Miller, "Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels," IEEE J. Quantum Electron. 29, 655-669 (1993).

Paradiso, M. A.

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, Williams and Wilkins, 2001).

Pashaie, R.

Prange, S.

S. Prange and H. Klar, Neurobionics: an Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System, H. Both, M. Sami, and R. Eckmiller, eds. (Elsevier, 1993), p. 225.

Salamanca-Riba, L.

Seiderman, W.

Soltani, P. K.

Stori, G.

Tamura, Y.

Trappenberg, T. P.

T. P. Trappenberg, Fundamentals of Computational Neuroscience (Oxford U. Press, 2001).

Wang, J.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical orthogonal neural network associative memory with luminescence rebroadcasting devices," in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1989), 2, 483-485.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical dynamic matched filtering with electron trapping devices," Proc. SPIE 977, 271-276 (1988).

Wen, Z.

Wuttig, M.

Appl. Opt. (4)

Comput. Technol. Rev. (1)

J. Lindmayer, P. Goldmith, and K. Gross, "Electron-trapping optical technology--memory's next generation," Comput. Technol. Rev. 10, 37-42 (1990).

IEEE J. Quantum Electron. (1)

A. L. Lentine and D. Miller, "Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels," IEEE J. Quantum Electron. 29, 655-669 (1993).

J. Opt. Soc. Am. B (2)

Neural Networks (2)

G. Lee and N. H. Farhat, "The bifurcating neuron network 1," Neural Networks 14, 115-131 (2001).

G. Lee and N. H. Farhat, "The bifurcating neuron network 2: an analog associative memory," Neural Networks 15, 69-84 (2002).

Opt. Lett. (4)

Proc. SPIE (1)

A. D. McAulay, J. Wang, and C. T. Ma, "Optical dynamic matched filtering with electron trapping devices," Proc. SPIE 977, 271-276 (1988).

Solid State Technol. (1)

J. Lindmayer, "A new erasable optical memory," Solid State Technol. 31, 135-138 (1988).

Other (8)

M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, Williams and Wilkins, 2001).

T. P. Trappenberg, Fundamentals of Computational Neuroscience (Oxford U. Press, 2001).

S. Prange and H. Klar, Neurobionics: an Interdisciplinary Approach to Substitute Impaired Functions of the Human Nervous System, H. Both, M. Sami, and R. Eckmiller, eds. (Elsevier, 1993), p. 225.

R. Pashaie and N. H. Farhat, "Optical realization of the retinal ganglion receptive fields on the electron-trapping material thin film," 32nd Northeast Bioengineering Conference (IEEE, 2006), pp. 1-2.

A. D. McAulay, J. Wang, and C. T. Ma, "Optical orthogonal neural network associative memory with luminescence rebroadcasting devices," in Proceedings of the IEEE International Conference on Neural Networks (IEEE, 1989), 2, 483-485.

J. Huguenard and D. A. McCormick, Electrophysiology of the Neuron: an Iteractive Tutorial (Oxford U. Press, 1994).

Opening of potassium ion channels during the repolarization is modeled by an α-function: α(t) = At exp(−t/τ), where A is the amplitude factor and τ is the time constant.

The electron-trapping material used for this investigation was furnished by the former Quantex Corporation, Rockville, Md.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics