Abstract

We present the design and procedures for implementing a parallel optical coherence tomography (POCT) imaging system that can be adapted to an endoscopic format. The POCT system consists of a single mode fiber (SMF) array with multiple reduced diameter (15μm) SMFs in the sample arm with 15μm center spacing between fibers. The size of the array determines the size of the transverse imaging field. Electronic scanning eliminates the need for mechanically scanning in the lateral direction. Experimental image data obtained with this system show the capability for parallel axial scan acquisition with lateral resolution comparable to mechanically scanned optical coherence tomography systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).
  2. G. Loeb and J. K. Barton, "Imaging botanical subjects with optical coherence tomography: a feasibility study," Trans. ASAE 46, 1751-1757 (2003).
  3. J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
    [CrossRef]
  4. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  5. S. Bourquin, P. Seitz, and R. P. Salathe, "Optical coherence topography based on a two-dimensional smart detector array," Opt. Lett. 26, 512-514 (2001).
    [CrossRef]
  6. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, "Fiber-optic-bundle-based optical coherence tomography," Opt. Lett. 30, 1803-1805 (2005).
    [CrossRef] [PubMed]
  7. Y. Luo, J. E. Castillo, L. J. Arauz, J. K. Barton, and R. K. Kostuk, "Coherent proximity sensor with high density fiber array," presented at Frontiers in Optics 2006, Rochester, N.Y. USA, 8-12 October 2006.
  8. Corning SMF-28 Optical Fiber Product Information, Corning, Inc., N.Y., 2001.
  9. Y. Luo, J. E. Castillo, L. J. Arauz, J. K. Barton, and R. K. Kostuk, "Coupling and crosstalk effects in 12-15 μm diameter single-mode fiber arrays for simultaneous transmission and photon collection from scattering media," Appl. Opt. 46, 253-261 (2007).
    [CrossRef] [PubMed]
  10. M. Scepanovic, J. E. Castillo, J. K. Barton, D. Mathine, R. K. Kostuk, and A. Sato, "Design and processing of high-density single mode fiber arrays for imaging and parallel interferometer applications," Appl. Opt. 43, 4150-4156 (2004).
    [CrossRef] [PubMed]
  11. L. J. Arauz, Y. Luo, J. E. Castillo, R. K. Kostuk, and J. K. Barton, "10-channel fiber array fabrication technique for parallel optical coherence tomography system," presented at SPIE Photonics West, San Jose, Calif., USA, 23-25 January 2007.
  12. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1878-1887 (2006).
    [CrossRef] [PubMed]
  13. W. Xu, D. L. Mathine, and J. K. Barton, "Analog CMOS design for optical coherence tomography signal detection and processing," IEEE Trans. Biomed. Eng. (to be published).
    [PubMed]
  14. J. A. Frantz, J. T. A. Carriere, and R. K. Kostuk, "Measurement of ion-exchanged waveguide burial depth with a camera," Opt. Eng. 43, 3149-3154 (2004).
    [CrossRef]
  15. J. T. A. Carriere, J. A. Frantz, B. R. West, S. Honkanen, and R. K. Kostuk, "Bend loss effects in diffused, buried waveguides," Appl. Opt. 44, 1698-1703 (2005).
    [CrossRef] [PubMed]
  16. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]

2007

2006

2005

2004

2003

G. Loeb and J. K. Barton, "Imaging botanical subjects with optical coherence tomography: a feasibility study," Trans. ASAE 46, 1751-1757 (2003).

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

2001

1999

J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

IEEE Trans. Biomed. Eng.

W. Xu, D. L. Mathine, and J. K. Barton, "Analog CMOS design for optical coherence tomography signal detection and processing," IEEE Trans. Biomed. Eng. (to be published).
[PubMed]

Opt. Eng.

J. A. Frantz, J. T. A. Carriere, and R. K. Kostuk, "Measurement of ion-exchanged waveguide burial depth with a camera," Opt. Eng. 43, 3149-3154 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Trans. ASAE

G. Loeb and J. K. Barton, "Imaging botanical subjects with optical coherence tomography: a feasibility study," Trans. ASAE 46, 1751-1757 (2003).

Other

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Dekker, 2002).

Y. Luo, J. E. Castillo, L. J. Arauz, J. K. Barton, and R. K. Kostuk, "Coherent proximity sensor with high density fiber array," presented at Frontiers in Optics 2006, Rochester, N.Y. USA, 8-12 October 2006.

Corning SMF-28 Optical Fiber Product Information, Corning, Inc., N.Y., 2001.

L. J. Arauz, Y. Luo, J. E. Castillo, R. K. Kostuk, and J. K. Barton, "10-channel fiber array fabrication technique for parallel optical coherence tomography system," presented at SPIE Photonics West, San Jose, Calif., USA, 23-25 January 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) (a) Schematic of a linear fiber array with 15 channels and a silicon trench groove. (b) Linear fiber array with eight channels for POCT.

Fig. 2
Fig. 2

Diagram of the assembled probe end of the POCT system.

Fig. 3
Fig. 3

Diagram of the endoscopic assembled probe with a 0.2   mm thick rigid stainless steel tube: (a) lateral view and (b) front view.

Fig. 4
Fig. 4

Schematic of fiber-length equalization interferometer. Light from a SLD is split between the reference and sample fibers by passing it through a 3 dB coupler. The probe end illuminates an IR mirror, and the reference end illuminates a glavo mirror. The return signal from the paired sample and reference arm is coupled into an output fiber that transfers the combined interference signal to an IR detector.

Fig. 5
Fig. 5

Parallel OCT system setup. Light from a SLD is coupled into a parallel fiber array by a 3   dB coupler box. The probe end illuminates a target sample, and the reference end illuminates a glavo mirror. The return signal from the paired sample and reference arm is coupled into an output fiber that transfers the combined interference signal to an IR detector.

Fig. 6
Fig. 6

POCT image of the central portion of a contact lens. The resultant depth is 300 μ m with 120 μ m ( 8 × 15 μ m ) wide.

Fig. 7
Fig. 7

(a) Side view of a silicon ( 50 × 50 μ m inner square) depression with a depth of 70 μ m was measured by a profilometer. (b) POCT image of the depression showing a depth of 75 μ m . The width of the inner layer is 45 μ m .

Fig. 8
Fig. 8

POCT image of tangerine flesh. The tangerine's juice vacuoles are clearly visible.

Tables (1)

Tables Icon

Table 1 Channel Transmission Efficiency

Equations (85)

Equations on this page are rendered with MathJax. Learn more.

( 15 μ m )
15 μ m
( 10 μ m )
2   mm
15 μ m
15 μ m
1   mm
13.5 μ m
2   mm
15 μ m
( η = 100 % × P o u t / P i n )
P x t ( dB ) = 10   log ( P a d j a c e n t / P s i g n a l )
P a d j a c e n t
P s i g n a l
30   dB
1.8   mm
0.48
1.31 μ m
250 μ m
0.2   mm
20 μ m
1.54
1.31 μ m
0.2   mm
2   mm
1.8   mm
1.31 μ m
9.0 μ m
1.01
9.1 μ m
257 μ m
8.2 μ m
240 μ m
2   mm
1.31 μ m
40   nm
3   dB
3   dB
1   m
1.3   mm
15 μ m
1 : 1
9.1 μ m
19 μ m
Δ z FWHM = 2 ln   2 π λ ¯ 2 Δ λ 0.44 λ ¯ 2 Δ λ ,
λ ¯
21 μ m
250 μ m
1 × 10
3   dB
( Δ l )
Δ l
1   cm
8   cm
120 μ m
8   fibers × 15 μ m
14   Hz
66   dB
1   mm
300 μ m
50 μ m
70 μ m
1 μ m
75 μ m
45 μ m
2   mm
80 200 μ m
15 μ m
2   mm
15 μ m
1.31 μ m
15 μ m
2   mm
3   dB
100 × 2048
2   mm
0.2   mm
3   dB
300 μ m
120 μ m
( 8 × 15 μ m )
50 × 50 μ m
70 μ m
75 μ m
45 μ m

Metrics