Abstract

We report the simultaneous multipoint fabrication of polymer rods by the femtosecond laser processing of a negative photoresist using a microlens array (MLA). The rods were periodically arranged in the form of an array corresponding to the MLA and free-standing on a glass substrate. The use of a photomask enabled us to define the contour of the rod array. Furthermore, sample translation techniques were demonstrated for the effective fabrication of large-area structures.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. I. Miyamoto, K. Sugioka, S. Katayama, H. Helvajian, F. H. Dausinger, and K. Itoh, eds., Proceedings of The Fourth International Congress on Laser Advanced Materials Processing (2006).
  2. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
    [CrossRef]
  3. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
    [CrossRef]
  4. Y. Nakata, T. Okada, and M. Maeda, "Nano-sized hollow bump array generated by single femtosecond laser pulse," Jpn. J. Appl. Phys. Part 2 42, L1452-L1454 (2003).
    [CrossRef]
  5. S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
    [CrossRef]
  6. J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
    [CrossRef]
  7. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, "Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization," Opt. Express 14, 800-809 (2006).
    [CrossRef] [PubMed]
  8. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005).
    [CrossRef]
  9. Placing the photomask exactly at the focal plane caused damage of the photomask; thus the photomask was slightly shifted from the focal plane.
  10. T. Kondo, S. Juodkazis, and H. Misawa, "Reduction of capillary force for high-aspect ratio nanofabrication," Appl. Phys. A 81, 1583-1586 (2005).
    [CrossRef]
  11. A. S. Kewitsch and A. Yariv, "Self-focusing and self-trapping of optical beams upon photopolymerization," Opt. Lett. 21, 24-26 (1996).
    [CrossRef] [PubMed]
  12. F. M. Bain, A. E. Vasdekis, and G. A. Turnbull, "Holographic recording of sub-micron period gratings and photonic crystals in the photoresist SU8," Proc. SPIE 5931, 59311B (2005).
    [CrossRef]
  13. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
    [CrossRef] [PubMed]
  14. W. H. Tch, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, "SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication," Appl. Phys. Lett. 84, 4095-4097 (2004).
    [CrossRef]

2006 (1)

2005 (5)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

T. Kondo, S. Juodkazis, and H. Misawa, "Reduction of capillary force for high-aspect ratio nanofabrication," Appl. Phys. A 81, 1583-1586 (2005).
[CrossRef]

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
[CrossRef]

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

F. M. Bain, A. E. Vasdekis, and G. A. Turnbull, "Holographic recording of sub-micron period gratings and photonic crystals in the photoresist SU8," Proc. SPIE 5931, 59311B (2005).
[CrossRef]

2004 (1)

W. H. Tch, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, "SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication," Appl. Phys. Lett. 84, 4095-4097 (2004).
[CrossRef]

2003 (2)

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

Y. Nakata, T. Okada, and M. Maeda, "Nano-sized hollow bump array generated by single femtosecond laser pulse," Jpn. J. Appl. Phys. Part 2 42, L1452-L1454 (2003).
[CrossRef]

2001 (1)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

1996 (1)

Appl. Phys. A (2)

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
[CrossRef]

T. Kondo, S. Juodkazis, and H. Misawa, "Reduction of capillary force for high-aspect ratio nanofabrication," Appl. Phys. A 81, 1583-1586 (2005).
[CrossRef]

Appl. Phys. Lett. (5)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

W. H. Tch, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, "SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication," Appl. Phys. Lett. 84, 4095-4097 (2004).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 (1)

Y. Nakata, T. Okada, and M. Maeda, "Nano-sized hollow bump array generated by single femtosecond laser pulse," Jpn. J. Appl. Phys. Part 2 42, L1452-L1454 (2003).
[CrossRef]

Nature (1)

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

F. M. Bain, A. E. Vasdekis, and G. A. Turnbull, "Holographic recording of sub-micron period gratings and photonic crystals in the photoresist SU8," Proc. SPIE 5931, 59311B (2005).
[CrossRef]

Other (2)

Placing the photomask exactly at the focal plane caused damage of the photomask; thus the photomask was slightly shifted from the focal plane.

I. Miyamoto, K. Sugioka, S. Katayama, H. Helvajian, F. H. Dausinger, and K. Itoh, eds., Proceedings of The Fourth International Congress on Laser Advanced Materials Processing (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical setup. MLA, microlens array; VND, variable neutral density filter; L1, lens; DM, dichroic mirror; OL, objective lens. A, focal plane of the MLA; a photomask is inserted in the vicinity of A.

Fig. 2
Fig. 2

SEM images of a rod array fabricated without the use of a photomask. (a) Top view of a rod array with a height of 25 μ m . (b1) Oblique view of a rod array with a height of 90 μ m . (b2) Single rod lying on the substrate.

Fig. 3
Fig. 3

SEM image of an L-shaped rod array fabricated using a photomask. The inset shows the design of the photomask used (dimensions in millimeters).

Fig. 4
Fig. 4

SEM image of linear alignment of four square rod arrays (oblique view). The arrows indicate boundaries between rod arrays.

Fig. 5
Fig. 5

SEM image of “crossed-walls” structure (oblique view).

Metrics