Abstract

We have studied one-dimensional (1D) relief metalized subwavelength gratings, which support resonant optical transmission. We have used pregrooved DVD stampers, metalized with a thin Al layer. The sensitivity of resonant transmission of the gratings to the cladding environment was investigated by the help of matching fluids. We have shown that the shift of the spectral position of the resonance peak can be used for sensor applications, e.g., for determination of very low concentrations of nanosized dielectric particles in distilled water.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. W. Stroke, "Ruling, testing and use of optical gratings for high resolution spectroscopy," in Progress in Optics, E. Wolf, ed. (Elsevier North, 1963), Vol. II.
  2. D. Meshulach, D. Yelin, and Y. Silberberg, "Adaptive real-time femtosecond pulse shaping," Phys. Rev. B 15, 1615-1619 (1998).
  3. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999), quoting R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag. 4, 396-408 (1902).
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  5. E. Popov, S. Enoch, G. Tayeb, M. Nevière, B. Gralak, and N. Bonod, "Enhanced transmission due to non-plasmon resonances in one and two dimensional gratings," Appl. Opt. 43, 999-1008 (2004).
    [CrossRef] [PubMed]
  6. P. Sharlandjiev, D. Nazarova, B. Mednikarov, and M. Pham, "On 'extraordinary' optical transmission from periodic and random nanostrucures," J. Optoelectron. Adv. Mater. 7, 309-312 (2005).
  7. P. Sharlandjiev and D. Nazarova, "Thin metal composite films with dielectric nanosized particles: modeling their optical response," in Proceedings of Nanoscience & Nanotechnology, Vol. 5 (Heron Press, 2005), pp. 23-26.
  8. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
    [CrossRef]
  9. D. Nazarova, P. Sharlandjiev, and B. Mednikarov, "Optical resonances in relief metalized 1D gratings," Proc. SPIE 6252, 523-527 (2006).
  10. M. A. Ordal, L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metal Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1117 (1983).
    [CrossRef] [PubMed]
  11. M. Sarrazin, J.-P. Vigneron, and J. M. Vigoureux, "Role of Woods anomalies in optical properties: thin metal films with bidimensional array of subwavelength holes," Phys. Rev. B 57, 085415-085423 (2003).
    [CrossRef]
  12. T. K. Gaylord and M. G. Moharan, "Diffraction analysis of dielectric surface relief grating," J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [CrossRef]
  13. E. Loewen and E. Popov, Diffraction Grating and Applications (Marcel Dekker, 1997).
  14. U. Kreibig and M. Voller, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  15. E. Fontana, "Theoretical and experimental study of the surface plasmon resonance effect on a recordable compact disk," Appl. Opt. 43, 79-87 (2004).
    [CrossRef] [PubMed]

2006

D. Nazarova, P. Sharlandjiev, and B. Mednikarov, "Optical resonances in relief metalized 1D gratings," Proc. SPIE 6252, 523-527 (2006).

2005

P. Sharlandjiev, D. Nazarova, B. Mednikarov, and M. Pham, "On 'extraordinary' optical transmission from periodic and random nanostrucures," J. Optoelectron. Adv. Mater. 7, 309-312 (2005).

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

2004

2003

M. Sarrazin, J.-P. Vigneron, and J. M. Vigoureux, "Role of Woods anomalies in optical properties: thin metal films with bidimensional array of subwavelength holes," Phys. Rev. B 57, 085415-085423 (2003).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

D. Meshulach, D. Yelin, and Y. Silberberg, "Adaptive real-time femtosecond pulse shaping," Phys. Rev. B 15, 1615-1619 (1998).

1983

1982

1902

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999), quoting R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag. 4, 396-408 (1902).

Appl. Opt.

J. Opt. Soc. Am.

J. Optoelectron. Adv. Mater.

P. Sharlandjiev, D. Nazarova, B. Mednikarov, and M. Pham, "On 'extraordinary' optical transmission from periodic and random nanostrucures," J. Optoelectron. Adv. Mater. 7, 309-312 (2005).

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Phys. Rep.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131-314 (2005).
[CrossRef]

Phys. Rev. B

D. Meshulach, D. Yelin, and Y. Silberberg, "Adaptive real-time femtosecond pulse shaping," Phys. Rev. B 15, 1615-1619 (1998).

M. Sarrazin, J.-P. Vigneron, and J. M. Vigoureux, "Role of Woods anomalies in optical properties: thin metal films with bidimensional array of subwavelength holes," Phys. Rev. B 57, 085415-085423 (2003).
[CrossRef]

Proc. SPIE

D. Nazarova, P. Sharlandjiev, and B. Mednikarov, "Optical resonances in relief metalized 1D gratings," Proc. SPIE 6252, 523-527 (2006).

Other

P. Sharlandjiev and D. Nazarova, "Thin metal composite films with dielectric nanosized particles: modeling their optical response," in Proceedings of Nanoscience & Nanotechnology, Vol. 5 (Heron Press, 2005), pp. 23-26.

M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999), quoting R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag. 4, 396-408 (1902).

G. W. Stroke, "Ruling, testing and use of optical gratings for high resolution spectroscopy," in Progress in Optics, E. Wolf, ed. (Elsevier North, 1963), Vol. II.

E. Loewen and E. Popov, Diffraction Grating and Applications (Marcel Dekker, 1997).

U. Kreibig and M. Voller, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

AFM analysis on bare relief DVD stamper before metallization.

Fig. 2
Fig. 2

Scheme of the grating structure: 1—polycarbonate substrate with real refractive index N f ; 2—Al thin film of thickness d 1 , covered by an oxide layer of thickness d 2 and real refractive index N 2 (not shown in the figure); 3—matching fluid with real refractive index N f . A thin layer of the fluid (thickness d3) separates the grating from the cover glass; 4—cover glass of real refractive index N sp .

Fig. 3
Fig. 3

Experimental grating transmission with matching fluid of N f = 1.515 : (a) TM polarization, (b) TE polarization.

Fig. 4
Fig. 4

Experimental grating transmission (TM polarization) with superstrates: (a) N f = 1 , (b) N f = 1.515 .

Fig. 5
Fig. 5

Theoretical subwavelength grating transmission (TM zero diffracted order) for matching fluids of indices (a) N f = 1.33 , (b) N f = 1.40 , and (c) N f = 1.51 .

Fig. 6
Fig. 6

Transmission (TM polarization), experimental spectra of subwavelength grating with fluids in contact with the metalized relief: (a) without nanoparticles (distilled H 2 O ), (b) with 3% nanoparticles.

Tables (2)

Tables Icon

Table 1 Positions of T max and Corresponding N f

Tables Icon

Table 2 Results of Filling Factor Estimation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N eff ( λ ) = N m ( λ ) 1 + i π f S ( 0 ; λ ) / k 3 v p 1 i π f S ( 0 ; λ ) / k 3 v p ,
ε eff = ε m 1 + 2 f L 1 f L ε m ( 1 + 3 f L ) ,
L = ( ε p ε m ε m ( ε p + 2 ε m ) ) ,

Metrics