Abstract

We report the application of optical frequency domain reflectometry and a discrete-layer-peeling inverse scattering algorithm to the spatial characterization of the UV induced complex coupling coefficient during fiber Bragg grating growth. The fiber grating is rapidly characterized using this technique to give irradiance dependent growth as a function of exposure time, thereby providing the complete characterization of the coupling coefficient in the form of a “growth surface,” which is related to the fiber's photosensitivity. We compare measurements of fiber Bragg grating growth in SMF-28 when exposed to continuous wave 244  nm irradiation from 0 to 90  W  cm2 for exposure times up to 3230 s with a selection of other fibers including high germanium concentration fiber and erbium doped fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  3. C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
    [CrossRef]
  4. J. Bland-Hawthorn, M. Englund, and G. Edvell, "New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating," Opt. Express 12, 5902-5909 (2004).
    [CrossRef] [PubMed]
  5. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823-825 (1989).
    [CrossRef] [PubMed]
  6. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
    [CrossRef]
  7. A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fiber Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
    [CrossRef]
  8. R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron. 35, 1105-1115 (1999).
    [CrossRef]
  9. L. Poladian, "Simple grating synthesis algorithm," Opt. Lett. 25, 787-789 (2000).
    [CrossRef]
  10. J. Skaar, L. G. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001).
    [CrossRef]
  11. J. Skaar and O. H. Waagaard, "Design and characterization of finite-length fiber gratings," IEEE J. Quantum Electron. 39, 1238-1245 (2003).
    [CrossRef]
  12. J. Skaar, "Synthesis and characterization of fiber Bragg gratings," Ph.D. dissertation (The Norwegian University of Science and Technology, 2000).
  13. J. A. Besley, L. Reekie, C. Weeks, T. Wang, and C. Murphy, "Grating writing model for materials with nonlinear photosensitive response," J. Lightwave Technol. 21, 2421-2428 (2003).
    [CrossRef]
  14. G. A. Miller, C. G. Askins, and E. J. Friebele, "Modified F-matrix calculation of Bragg grating spectra and its use with a novel nonlinear index growth law," J. Lightwave Technol. 24, 2416-2427 (2006).
    [CrossRef]
  15. G. A. Miller, C. G. Askins, G. A. Cranch, and E. J. Friebele, "Early index growth in germanosilicate fiber upon exposure to continuous wave ultraviolet light," J. Lightwave Technol. 25, 1034-1044 (2007).
    [CrossRef]
  16. D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainslie, "Direct observation of UV induced bleaching of 240-nm absorption-band in photosensitive germanosilicate glass-fibers," Electron. Lett. 28, 369-371 (1992).
    [CrossRef]
  17. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
    [CrossRef]
  18. Luna Technologies, "Optical Vector Analyzer CTe," http://www.lunatechnologies.com/products/ova/files/DATASHEET_OVACTe.pdf.
  19. G. M. H. Flockhart, G. A. Cranch, and C. K. Kirkendall, "Characterization of fiber Bragg grating growth using optical frequency domain reflectometry and layer-peeling," in Bragg Gratings, Poling & Photosensitivity/30th Australian Conference on Optical Fibre Technology (BGPP/ACOFT) (2005), pp. 76-78.
  20. M. Froggatt, "Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber," Appl. Opt. 35, 5162-5164 (1996).
    [CrossRef] [PubMed]
  21. O. H. Waagaard, "Polarization-resolved spatial characterization of birefringent fiber Bragg gratings," Opt. Express 14, 4221-4236 (2006).
    [CrossRef] [PubMed]
  22. Corning, "SMF-28e optical fiber product information," http://www.corning.com.
  23. H. Patrick and S. L. Gilbert, "Growth of Bragg gratings produced by continuous-wave ultraviolet-light in optical-fiber," Opt. Lett. 18, 1484-1486 (1993).
    [CrossRef] [PubMed]
  24. B. Poumellec, "Links between writing and erasure (or stability) of Bragg gratings in disordered media," J. Non-Cryst. Solids 239, 108-115 (1998).
    [CrossRef]
  25. J. Canning, "The characteristic curve and site-selective laser excitation of local relaxation in glass," J. Chem. Phys. 120, 9715-9719 (2004).
    [CrossRef] [PubMed]
  26. M. Douay, W. X. Xie, B. LeConte, T. Taunay, P. Bernage, P. Niay, P. Cordier, J. F. Bayon, H. Poignant, and E. Delevaque, "Progress in silica optical fibre photosensitivity," Ann. Telecommun. 52, 543-556 (1997).
  27. M. Kristensen, "Ultraviolet-light-induced processes in germanium-doped silica," Phys. Rev. B 6414, 144201 (2001).
  28. Z. S. Hegedus, "Contact printing of Bragg gratings in optical fibers: rigorous diffraction analysis," Appl. Opt. 36, 247-252 (1997).
    [CrossRef] [PubMed]

2007

2006

2004

J. Bland-Hawthorn, M. Englund, and G. Edvell, "New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating," Opt. Express 12, 5902-5909 (2004).
[CrossRef] [PubMed]

J. Canning, "The characteristic curve and site-selective laser excitation of local relaxation in glass," J. Chem. Phys. 120, 9715-9719 (2004).
[CrossRef] [PubMed]

2003

J. Skaar and O. H. Waagaard, "Design and characterization of finite-length fiber gratings," IEEE J. Quantum Electron. 39, 1238-1245 (2003).
[CrossRef]

J. A. Besley, L. Reekie, C. Weeks, T. Wang, and C. Murphy, "Grating writing model for materials with nonlinear photosensitive response," J. Lightwave Technol. 21, 2421-2428 (2003).
[CrossRef]

2001

J. Skaar, L. G. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001).
[CrossRef]

M. Kristensen, "Ultraviolet-light-induced processes in germanium-doped silica," Phys. Rev. B 6414, 144201 (2001).

2000

1999

R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron. 35, 1105-1115 (1999).
[CrossRef]

1998

B. Poumellec, "Links between writing and erasure (or stability) of Bragg gratings in disordered media," J. Non-Cryst. Solids 239, 108-115 (1998).
[CrossRef]

1997

M. Douay, W. X. Xie, B. LeConte, T. Taunay, P. Bernage, P. Niay, P. Cordier, J. F. Bayon, H. Poignant, and E. Delevaque, "Progress in silica optical fibre photosensitivity," Ann. Telecommun. 52, 543-556 (1997).

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fiber Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
[CrossRef]

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
[CrossRef]

Z. S. Hegedus, "Contact printing of Bragg gratings in optical fibers: rigorous diffraction analysis," Appl. Opt. 36, 247-252 (1997).
[CrossRef] [PubMed]

1996

1994

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

1993

H. Patrick and S. L. Gilbert, "Growth of Bragg gratings produced by continuous-wave ultraviolet-light in optical-fiber," Opt. Lett. 18, 1484-1486 (1993).
[CrossRef] [PubMed]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

1992

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainslie, "Direct observation of UV induced bleaching of 240-nm absorption-band in photosensitive germanosilicate glass-fibers," Electron. Lett. 28, 369-371 (1992).
[CrossRef]

1989

Ann. Telecommun.

M. Douay, W. X. Xie, B. LeConte, T. Taunay, P. Bernage, P. Niay, P. Cordier, J. F. Bayon, H. Poignant, and E. Delevaque, "Progress in silica optical fibre photosensitivity," Ann. Telecommun. 52, 543-556 (1997).

Appl. Opt.

Appl. Phys. Lett.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

Electron. Lett.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainslie, "Direct observation of UV induced bleaching of 240-nm absorption-band in photosensitive germanosilicate glass-fibers," Electron. Lett. 28, 369-371 (1992).
[CrossRef]

IEEE J. Quantum Electron.

J. Skaar, L. G. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron. 37, 165-173 (2001).
[CrossRef]

J. Skaar and O. H. Waagaard, "Design and characterization of finite-length fiber gratings," IEEE J. Quantum Electron. 39, 1238-1245 (2003).
[CrossRef]

R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron. 35, 1105-1115 (1999).
[CrossRef]

J. Appl. Phys.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

J. Chem. Phys.

J. Canning, "The characteristic curve and site-selective laser excitation of local relaxation in glass," J. Chem. Phys. 120, 9715-9719 (2004).
[CrossRef] [PubMed]

J. Lightwave Technol.

J. A. Besley, L. Reekie, C. Weeks, T. Wang, and C. Murphy, "Grating writing model for materials with nonlinear photosensitive response," J. Lightwave Technol. 21, 2421-2428 (2003).
[CrossRef]

G. A. Miller, C. G. Askins, and E. J. Friebele, "Modified F-matrix calculation of Bragg grating spectra and its use with a novel nonlinear index growth law," J. Lightwave Technol. 24, 2416-2427 (2006).
[CrossRef]

G. A. Miller, C. G. Askins, G. A. Cranch, and E. J. Friebele, "Early index growth in germanosilicate fiber upon exposure to continuous wave ultraviolet light," J. Lightwave Technol. 25, 1034-1044 (2007).
[CrossRef]

A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fiber Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
[CrossRef]

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

C. R. Giles, "Lightwave applications of fiber Bragg gratings," J. Lightwave Technol. 15, 1391-1404 (1997).
[CrossRef]

J. Non-Cryst. Solids

B. Poumellec, "Links between writing and erasure (or stability) of Bragg gratings in disordered media," J. Non-Cryst. Solids 239, 108-115 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

M. Kristensen, "Ultraviolet-light-induced processes in germanium-doped silica," Phys. Rev. B 6414, 144201 (2001).

Other

Corning, "SMF-28e optical fiber product information," http://www.corning.com.

J. Skaar, "Synthesis and characterization of fiber Bragg gratings," Ph.D. dissertation (The Norwegian University of Science and Technology, 2000).

Luna Technologies, "Optical Vector Analyzer CTe," http://www.lunatechnologies.com/products/ova/files/DATASHEET_OVACTe.pdf.

G. M. H. Flockhart, G. A. Cranch, and C. K. Kirkendall, "Characterization of fiber Bragg grating growth using optical frequency domain reflectometry and layer-peeling," in Bragg Gratings, Poling & Photosensitivity/30th Australian Conference on Optical Fibre Technology (BGPP/ACOFT) (2005), pp. 76-78.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of experimental setup used to characterize UV beam, expose optical fiber, and characterize FBG's complex reflectivity and transmission spectra.

Fig. 2
Fig. 2

Measured fluorescence profiles of UV beam waist with Gaussian fits. (a) Horizontal 1 / e 2 beam width of 2.4   mm ( R 2 = 0.996 ) . (b) Vertical 1 / e 2 beam width of 14 μ m ( R 2 = 0.999 ) .

Fig. 3
Fig. 3

Measured coupling coefficient magnitude after alignment with fluorescence profile and Δ n a c ( x ) for an equivalent sinusoidal refractive index modulation.

Fig. 4
Fig. 4

Measured coupling coefficient magnitude versus irradiance for select exposure times, and Δ n a c ( x ) for an equivalent sinusoidal refractive index modulation.

Fig. 5
Fig. 5

(Color online) Measured | q | as a function of accumulated exposure time and incident UV irradiance (circles) and 3D surface fit of Eq. (5). (The color fill of the data points describes the magnitude of the residual compared to the standard error of the fit: red < 1 standard error, blue < 2 standard error, green < 3 standard error, and magenta > 3 standard error.

Fig. 6
Fig. 6

(Color online) Log–log plot of | q | versus time for select irradiance values (data points), with individual logistic fits (curve).

Fig. 7
Fig. 7

(Color online) Growth versus cumulative fluence for select UV irradiances.

Fig. 8
Fig. 8

Differentiated and smoothed phase of complex coupling coefficient for select exposure times.

Fig. 9
Fig. 9

(Color online) Comparison of the peak UV induced coupling coefficient in a selection of optical fibers and the corresponding exposure conditions.

Tables (1)

Tables Icon

Table 1 Coefficients for Logisitic Eq. (5)

Equations (84)

Equations on this page are rendered with MathJax. Learn more.

244   nm
90   W   cm 2
n n e f f = Δ n a c ( x ) cos ( 2 π Λ z + θ ( x ) ) + Δ n d c ( x ) ,
n e f f
Δ n a c ( x )
Δ n d c ( x )
θ ( x )
Δ n a c ( x )
| q ( x ) | = π η λ B Δ n a c ( x ) ,
λ B = 2 n e f f Λ
θ ( x )
Δ n d c ( x )
arg [ q ( x ) ] = θ ( x ) 4 π η λ B 0 x Δ n dc ( x ) d x + π 2 .
n e f f
244   nm
90   W   cm 2
2 3   h
λ = 244   nm
P out = 125   mW
( Λ PM = 1067   nm )
6 ×
1 / e 2
14 μ m
28 μ m
1 / e 2
2.4   mm
410   nm
( P = 70   mW )
± 1
( 38 % )
( 38.4 μ m )
5   m
± 25 μ m
30   s
± 100 μ m
( 1.75   h )
| q |
Δ n a c ( x )
λ B
1543.830   nm
η = 1 exp ( 2 a 2 ω 2 ) ,
4.1 μ m
5.2 μ m
Δ n a c ( x )
30   W   cm 2
| q |
92   W   cm 2
| q |
| q ( I , t ) | = A 1 ( I ) A 2 ( I ) 1 + [ t / τ ( I ) ] α ( I ) + A 2 ( I ) ,
A 1 ( I ) = a 11 I 2 + a 12 I + a 13 ,
A 2 ( I ) = a 21 I 2 + a 22 I + a 23 ,
τ ( I ) = τ 1 I + τ 2 I + τ 3 ,
α ( I ) = α 1 I + α 2 ,
R 2
90   W   cm 2
Δ n a c
θ ( x )
Δ n d c
θ ( x ) = 0
Δ n d c ( x )
Δ n d c ( x ) = λ B 4 π η d   arg [ q ( x ) ] d x ,
Δ n d c
Δ n a c
Δ n d c
1.866 × 10 4
3.386 × 10 4
Δ n a c : Δ n d c
Δ n a c
| q |
R 2
1 / e 2
2.4   mm
( R 2 = 0.996 )
1 / e 2
14 μ m
( R 2 = 0.999 )
Δ n a c ( x )
Δ n a c ( x )
| q |
< 1
< 2
< 3
> 3
| q |

Metrics