Abstract

Among the wavelength-division-multiplexing (WDM) optical packet switches (OPSs) using wavelength converters (WCs), a shared-per-node switch architecture has been considered as a way to utilize WCs efficiently. We propose a new switch control algorithm for the architecture. The proposed algorithm, different from previous algorithms, focuses on using the heterogeneous WC blocks (HeWCBs), where a HeWCB consists of WCs with different wavelength conversion degrees (WCDs). The results show that the WDM OPS architecture using HeWCBs reduces the number of WCs with a higher WCD, while minimizing the packet loss from wavelength contention at outbound links.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. N. McKeown, "The iSLIP scheduling algorithm for input-queued switches," IEEE/ACM Trans. Netw. 7, 188-201 (1999).
    [CrossRef]
  2. P. Gambini, M. Renaud, C. Guillemot, F. Callegati, I. Andonovic, B. Bostica, D. Chiaroni, G. Corazza, S. L. Danielsen, P. Gravey, P. B. Hansen, M. Henry, C. Janz, A. Kloch, R. Krahenbuhl, C. Raffaelli, M. Schilling, A. Talneau, and L. Zucchelli, "Transparent optical packet switching: network architecture and demonstrators in the KEOPS project," IEEE J. Sel. Areas Commun. 16, 1245-1259 (1998).
    [CrossRef]
  3. X. Qin and Y. Yang, "Blocking probability in WDM multicast switching networks with limited wavelength conversion," in Second IEEE International Symposium on Network Computing and Applications, 2003. NCA 2003 (April 2003), pp. 322-329.
  4. S. L. Danielsen, B. Mikkelsen, C. Joergensen, T. Durhuus, and K. E. Stubkjaer, "WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance," J. Lightwave Technol. 15, 219-227 (1997).
    [CrossRef]
  5. S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, "Optical packet switched network layer without optical buffers," IEEE Photon. Technol. Lett. 10, 896-898 (1998).
    [CrossRef]
  6. F. A. Al-Zahrani, A. A. Habiballa, A. G. Fayoumi, and A. R. Jayasumana, "Performance tradeoffs of shared limited range wavelength conversion schemes in optical WDM networks," Second IFIP International Conference on, Wireless and Optical Communications Networks, 2005. WOCN 2005 (2005), pp. 18-22.
    [CrossRef]
  7. D. K. Hunter, M. H. M. Nizam, M. C. Chia, I. Andonovic, K. M. Guild, A. Tzanakaki, M. J. O'Mahony, L. D. Bainbridge, M. F. C. Stephens, R. V. Penty, and I. H. White, "WASP-NET: a wavelength switched packet network," IEEE Commun. Mag. 37, 120-129 (1999).
    [CrossRef]
  8. G. Shen, S. K. Bose, and T. H. Cheng, L. Chao, and T. Y. Chai, "Performance study on a WDM packet switch with limited-range wavelength converters," IEEE Commun. Lett. 5, 432-434 (2001).
    [CrossRef]
  9. X. Qin and Y. Yang, "Nonblocking WDM switching networks with full and limited wavelength conversion," IEEE Trans. Commun. 50, 2032-2041 (2002).
    [CrossRef]
  10. K.-C. Lee and V. O. K. Li, "Optimization of a WDM optical packet switch with wavelength converters," in Proceedings of IEEE INFOCOM '95. Fourteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Bringing Information to People (1995), pp. 423-430.
    [PubMed]
  11. K.-C. Lee and V. O. K. Li, "A wavelength-convertible optical network," J. Lightwave Technol. 11, 962-970 (1993).
    [CrossRef]
  12. L. Zhang and L. Li, "Performance comparison of share-per-link and share-per-node optical cross connect in WDM networks," IEEE 2002 International Conference on Communications, Circuites and Systems and West Sino Expositions (2002), pp. 840-844.
    [CrossRef] [PubMed]
  13. V. Eramo, M. Listanti, and P. Pacifici, "A comparison study on the number of wavelength converters needed in synchronous and asynchronous all-optical switching architectures," J. Lightwave Technol. 21, 340-355 (2003).
    [CrossRef]
  14. V. Eramo and M. Listanti, "Performance evaluation of optical cross connect architectures under an efficient wavelength assignment," IEEE Commun. Lett. 6, 294-296 (2002).
    [CrossRef]
  15. V. Eramo and M. Listanti, "Packet loss in a bufferless optical WDM switch employing shared tunable wavelength converters," J. Lightwave Technol. 18, 1818-1833 (2000).
    [CrossRef]
  16. A. A. Rehman and A. Karim, "Modeling and Performance Analysis of WDM Switching Networks with a Limited Number of Wavelength Converters," IEEE INMIC 2005 9th International Multitopic Conference (2005), pp. 1-6.
  17. X. Qin and Y. Yang, "Blocking probability in WDM switching networks with limited wavelength conversion," in Proceedings of Eleventh International Conference on Computer Communications and Networks, 2002 (2002), pp. 454-459.

2003 (1)

2002 (2)

V. Eramo and M. Listanti, "Performance evaluation of optical cross connect architectures under an efficient wavelength assignment," IEEE Commun. Lett. 6, 294-296 (2002).
[CrossRef]

X. Qin and Y. Yang, "Nonblocking WDM switching networks with full and limited wavelength conversion," IEEE Trans. Commun. 50, 2032-2041 (2002).
[CrossRef]

2001 (1)

G. Shen, S. K. Bose, and T. H. Cheng, L. Chao, and T. Y. Chai, "Performance study on a WDM packet switch with limited-range wavelength converters," IEEE Commun. Lett. 5, 432-434 (2001).
[CrossRef]

2000 (1)

1999 (2)

N. McKeown, "The iSLIP scheduling algorithm for input-queued switches," IEEE/ACM Trans. Netw. 7, 188-201 (1999).
[CrossRef]

D. K. Hunter, M. H. M. Nizam, M. C. Chia, I. Andonovic, K. M. Guild, A. Tzanakaki, M. J. O'Mahony, L. D. Bainbridge, M. F. C. Stephens, R. V. Penty, and I. H. White, "WASP-NET: a wavelength switched packet network," IEEE Commun. Mag. 37, 120-129 (1999).
[CrossRef]

1998 (2)

S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, "Optical packet switched network layer without optical buffers," IEEE Photon. Technol. Lett. 10, 896-898 (1998).
[CrossRef]

P. Gambini, M. Renaud, C. Guillemot, F. Callegati, I. Andonovic, B. Bostica, D. Chiaroni, G. Corazza, S. L. Danielsen, P. Gravey, P. B. Hansen, M. Henry, C. Janz, A. Kloch, R. Krahenbuhl, C. Raffaelli, M. Schilling, A. Talneau, and L. Zucchelli, "Transparent optical packet switching: network architecture and demonstrators in the KEOPS project," IEEE J. Sel. Areas Commun. 16, 1245-1259 (1998).
[CrossRef]

1997 (1)

S. L. Danielsen, B. Mikkelsen, C. Joergensen, T. Durhuus, and K. E. Stubkjaer, "WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance," J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

1993 (1)

K.-C. Lee and V. O. K. Li, "A wavelength-convertible optical network," J. Lightwave Technol. 11, 962-970 (1993).
[CrossRef]

IEEE Commun. Lett. (2)

G. Shen, S. K. Bose, and T. H. Cheng, L. Chao, and T. Y. Chai, "Performance study on a WDM packet switch with limited-range wavelength converters," IEEE Commun. Lett. 5, 432-434 (2001).
[CrossRef]

V. Eramo and M. Listanti, "Performance evaluation of optical cross connect architectures under an efficient wavelength assignment," IEEE Commun. Lett. 6, 294-296 (2002).
[CrossRef]

IEEE Commun. Mag. (1)

D. K. Hunter, M. H. M. Nizam, M. C. Chia, I. Andonovic, K. M. Guild, A. Tzanakaki, M. J. O'Mahony, L. D. Bainbridge, M. F. C. Stephens, R. V. Penty, and I. H. White, "WASP-NET: a wavelength switched packet network," IEEE Commun. Mag. 37, 120-129 (1999).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

P. Gambini, M. Renaud, C. Guillemot, F. Callegati, I. Andonovic, B. Bostica, D. Chiaroni, G. Corazza, S. L. Danielsen, P. Gravey, P. B. Hansen, M. Henry, C. Janz, A. Kloch, R. Krahenbuhl, C. Raffaelli, M. Schilling, A. Talneau, and L. Zucchelli, "Transparent optical packet switching: network architecture and demonstrators in the KEOPS project," IEEE J. Sel. Areas Commun. 16, 1245-1259 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, "Optical packet switched network layer without optical buffers," IEEE Photon. Technol. Lett. 10, 896-898 (1998).
[CrossRef]

IEEE Trans. Commun. (1)

X. Qin and Y. Yang, "Nonblocking WDM switching networks with full and limited wavelength conversion," IEEE Trans. Commun. 50, 2032-2041 (2002).
[CrossRef]

IEEE/ACM Trans. Netw. (1)

N. McKeown, "The iSLIP scheduling algorithm for input-queued switches," IEEE/ACM Trans. Netw. 7, 188-201 (1999).
[CrossRef]

J. Lightwave Technol. (4)

S. L. Danielsen, B. Mikkelsen, C. Joergensen, T. Durhuus, and K. E. Stubkjaer, "WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance," J. Lightwave Technol. 15, 219-227 (1997).
[CrossRef]

V. Eramo, M. Listanti, and P. Pacifici, "A comparison study on the number of wavelength converters needed in synchronous and asynchronous all-optical switching architectures," J. Lightwave Technol. 21, 340-355 (2003).
[CrossRef]

K.-C. Lee and V. O. K. Li, "A wavelength-convertible optical network," J. Lightwave Technol. 11, 962-970 (1993).
[CrossRef]

V. Eramo and M. Listanti, "Packet loss in a bufferless optical WDM switch employing shared tunable wavelength converters," J. Lightwave Technol. 18, 1818-1833 (2000).
[CrossRef]

Other (6)

A. A. Rehman and A. Karim, "Modeling and Performance Analysis of WDM Switching Networks with a Limited Number of Wavelength Converters," IEEE INMIC 2005 9th International Multitopic Conference (2005), pp. 1-6.

X. Qin and Y. Yang, "Blocking probability in WDM switching networks with limited wavelength conversion," in Proceedings of Eleventh International Conference on Computer Communications and Networks, 2002 (2002), pp. 454-459.

L. Zhang and L. Li, "Performance comparison of share-per-link and share-per-node optical cross connect in WDM networks," IEEE 2002 International Conference on Communications, Circuites and Systems and West Sino Expositions (2002), pp. 840-844.
[CrossRef] [PubMed]

X. Qin and Y. Yang, "Blocking probability in WDM multicast switching networks with limited wavelength conversion," in Second IEEE International Symposium on Network Computing and Applications, 2003. NCA 2003 (April 2003), pp. 322-329.

K.-C. Lee and V. O. K. Li, "Optimization of a WDM optical packet switch with wavelength converters," in Proceedings of IEEE INFOCOM '95. Fourteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Bringing Information to People (1995), pp. 423-430.
[PubMed]

F. A. Al-Zahrani, A. A. Habiballa, A. G. Fayoumi, and A. R. Jayasumana, "Performance tradeoffs of shared limited range wavelength conversion schemes in optical WDM networks," Second IFIP International Conference on, Wireless and Optical Communications Networks, 2005. WOCN 2005 (2005), pp. 18-22.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Generic switch architecture with LWCs of WCD i , j ,   …   ,   l per each channel, where 0 i , j ,   …   ,   l W / 2 .

Fig. 2
Fig. 2

Packet loss probability according to the combination of WCs with the different WCD in a WCB.

Fig. 3
Fig. 3

Generic SPN switch architecture.

Fig. 4
Fig. 4

Proposed switch architecture with HeWCBs.

Fig. 5
Fig. 5

Switch design procedure.

Fig. 6
Fig. 6

WC usage ratio when each WC in Fig. 1 has WCD d, and the arrival rate per wavelength is 0.8, where we enlarge the WC usage ratio when WCs whose WCD is less than or equal to five are used.

Fig. 7
Fig. 7

Example that explains the switch control algorithm at a specific time slot: (a) the switch operation with a HoWCB, (b) with a HeWCB; × indicates the failure of wavelength conversion.

Fig. 8
Fig. 8

Packet loss probability of OPS with LWCs that have heterogeneous wavelength conversion capability, where R k 1 , k 2 = N .

Fig. 9
Fig. 9

Packet loss probability of OPS with LWCs that have heterogeneous wavelength conversion capability according to various R 0 , k 2 values, where N = 8 and W = 16 .

Fig. 10
Fig. 10

Packet loss probability of OPS with LWCs that have heterogeneous wavelength conversion capability according to various R 0 , k 2 values, where N = 16 and W = 8 .

Fig. 11
Fig. 11

Packet loss probability of OPS with LWCs, which have heterogeneous wavelength conversion capability according to various R 0 , k 2 values, where N = 16 and W = 32 .

Fig. 12
Fig. 12

Packet loss probability of OPS with LWCs that have heterogeneous wavelength conversion capability according to various R 0 , k 2 values, where N = 32 , W = 16 .

Fig. 13
Fig. 13

Packet loss probability of OPS with LWCs that have heterogeneous wavelength conversion capability according to variable arrival rate, where R k 1 , k 2 = N , N = 8 , and W = 16 .

Fig. 14
Fig. 14

Packet loss probability of OPS with LWCs that have heterogeneous wavelength conversion capability according to variable arrival rate, where R k 1 , k 2 = N , N = 16 , and W = 8 .

Fig. 15
Fig. 15

Packet loss probability of OPS with LWCs that have heterogeneous wavelength conversion capability according to variable arrival rate, where R k 1 , k 2 = N , N = 16 , and W = 32 .

Fig. 16
Fig. 16

Packet loss probability of OPS with LWCs that have heterogeneous wavelength conversion capability according to variable arrival rate, where R k 1 , k 2 = N , N = 32 , and W = 16 .

Fig. 17
Fig. 17

Packet loss probability of OPS with no WCB; R k 1 =1, k 2 = 2 ,   …   , k W / 2 WCs based on wavelength usage ratio; and R k W / 2 = N WCs per link, where N = 8 and W = 16 .

Fig. 18
Fig. 18

Packet loss probability of OPS with no WCB; R k 1 =1, k 2 = 2 ,   …   , k W / 2 WCs based on wavelength usage ratio; and R k W / 2 = N WCs per link, where N = 16 and W = 8 .

Fig. 19
Fig. 19

Packet loss probability of OPS with no WCB; R k 1 =1, k 2 = 3 ,   …   , k W / 2 WCs based on wavelength usage ratio; and R k W / 2 = N WCs per link, where N = 16 and W = 32 .

Fig. 20
Fig. 20

Packet loss probability of OPS with no WCB; R k 1 =1, k 2 = 3 ,   …   , k W / 2 WCs based on wavelength usage ratio; and R k W / 2 = N WCs per link, where N = 32 and W = 16 .

Tables (1)

Tables Icon

Table 1 Comparison of Wavelength Conversion Efficiencies of WCBs under Variable Arriving Packets, where ρ = 0.8

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E wcb = C e C r ,
C r = d = 1 W / 2 k d · d ,
C e = i = 1 T k C i T k · ( d = 1 max d d · U d ) .
E P L = P L , R k 1 , k 2 ,   …   , k W / 2 P L , w / o P L , R k 1 , k 2 ,   …   , k W / 2 .
E = E P L · E wcb .
α ( K , i , p ) = ( K i ) p i ( 1 p ) K i .
P L 1 = i = W + 1 N W α ( N W , i 1 , ρ i ) ( i W i ) .
P L 2 = i = 0 N R k 1 , k 2 1 j = R k 1 , k 2 + 1 N i α ( N , i , ρ ) ,
α ( N i , j R k 1 , k 2 , ρ 1 ) ( j R k 1 , k 2 j ) ,
ρ 1 = ρ ( 1 1 α ( N , 0,  ρ N ) ρ ) .
P L = { i = ( R k 1 , k 2 + 1 ) N α ( N , 0,  ρ N ) α ( N 1 ,  i R k 1 , k 2 ,  ρ 1 N ) ( i R k 1 , k 2 1 i ) ,   if  R k 1 , k 2 k 1 = 1 , R k 1 , k 2 2 ; i = ( R k 1 , k 2 + 2 ) N α ( N , 0,  ρ N ) α ( N 1 ,  i s , ρ 1 N ) ( i s + 1 i ) ,   if   s = 5 , R k 1 , k 2 k 1 = 0 , R k 1 , k 2 3 ; if  s = 6 , R k 1 , k 2 k 1 1 , R k 1 , k 2 5 ; i = s N α ( N , 0,  ρ N ) α ( N 1 ,  i s , ρ 1 N ) ( i s + 1 i ) ,   if   s { 4 , 5 , 6 } , R k 1 , k 2 k 1 = 1 , R k 1 , k 2 > ( s 2 ) .

Metrics