Abstract

Temporal behavior of pulses from a Q-switched Nd:YAG laser with an unstable resonator can vary significantly with radial position in the beam. Our laser provides pulses with position-dependent durations spanning 811.5  ns at 1064  nm and 710  ns at 532  nm. Pulses emerge first and have the longest duration at the center of the beam; they are shorter (by up to 4 ns) and increasingly delayed (by up to 10 ns) with increasing radial distance from the center. This behavior can have a dramatic effect on time-sensitive experiments, such as laser-induced incandescence of soot, if not taken into account.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. Anstett, M. Nittmann, A. Borsutzky, and R. Wallenstein, "Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers," Appl. Phys. B 76, 833-838 (2003).
    [CrossRef]
  2. A. E. Siegman, Lasers (University Science Books, 1986).
  3. K. J. Snell, N. McCarthy, and M. Piché, "Single transverse mode oscillation from an unstable resonator Nd:YAG laser using a variable reflectivity mirror," Opt. Commun. 65, 377-382 (1988).
    [CrossRef]
  4. N. McCarthy and P. Lavigne, "Large-size Gaussian mode in unstable resonators using Gaussian mirrors," Opt. Lett. 10, 553-555 (1985).
    [CrossRef] [PubMed]
  5. S. De Silvestri, V. Magni, O. Svelto, and G. Valentini, "Lasers with super-Gaussian mirrors," IEEE J. Quantum Electron. 26, 1500-1509 (1990).
    [CrossRef]
  6. A. Caprara and G. C. Reali, "Time varying M2 in Q-switched lasers," Opt. Quantum Electron. 24, S1001-S1009 (1992).
    [CrossRef]
  7. A. Caprara and G. C. Reali, "Time-resolved M2 of nanosecond pulses from a Q-switched variable-reflectivity-mirror Nd:YAG laser," Opt. Lett. 17, 414-416 (1992).
    [CrossRef] [PubMed]
  8. J. N. Forkey, W. R. Lempert, and R. B. Miles, "Observation of a 100-MHz frequency variation across the output of a frequency-doubled injection-seeded unstable-resonator Q-switched Nd:YAG laser," Opt. Lett. 22, 230-232 (1997).
    [CrossRef] [PubMed]
  9. J. E. Dec, A. O. zur Loye, and D. L. Siebers, "Soot distribution in a D. I. diesel engine using 2-D laser-induced incandescence imaging," SAE Trans. 100, 277-288 (1991).
  10. J. E. Dec, "Soot distribution in a D. I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity," SAE Trans. 101, 101-112 (1992).
  11. C. Espey and J. E. Dec, "Diesel engine combustion studies in a newly designed optical-access engine using high speed visualization and 2-D laser imaging," SAE Trans. 102, 703-723 (1993).
  12. J. A. Pinson, D. L. Mitchell, and R. J. Santoro, "Quantitative, planar soot measurements in a D. I. diesel engine using laser-induced incandescence and light scattering," Proc. SAE , SAE Paper No. 932650 (1993).
  13. J. A. Pinson, T. Ni, and T. A. Litzinger, "Quantitative imaging study of the effects of intake air temperature on soot evaluation in an optically-accessible D. I. diesel engine," SAE Trans. 103, 1773-1788 (1994).
  14. K. Inagaki, S. Takasu, and K. Nakakita, "In-cylinder quantitative soot concentration measurement by laser-induced incandescence," SAE Trans. 108, 574-586 (1999).
  15. D. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, and Ö. L. Gülder, "Particulate matter measurements in a diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure," SAE Trans. 108(4), 2156-2164 (1999).
  16. D. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, and W. D. Bachalo, "In situ real time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence," SAE Trans. 109, 1914-1925 (2000).
  17. P. O. Witze, "Real-time measurement of the volatile fraction of diesel particulate matter using laser-induced vaporization with elastic scattering (LIVES)," SAE Trans. 111, 661-672 (2002).
  18. N. P. Tait and D. A. Greenhalgh, "PLIF imaging of fuel fraction in practical devices and LII imaging of soot," Ber. Bunsenges. Phys. Chem. 97, 1619-1625 (1993).
  19. F. Cignoli, S. Benecchi, and G. Zizak, "Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames," Appl. Opt. 33, 5778-5782 (1994).
    [CrossRef] [PubMed]
  20. R. L. Vander Wal and K. J. Weiland, "Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction," Appl. Phys. B 59, 445-452 (1994).
    [CrossRef]
  21. T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
    [CrossRef] [PubMed]
  22. C. R. Shaddix and K. C. Smyth, "Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames," Combust. Flame 107, 418-452 (1996).
    [CrossRef]
  23. H. Geitlinger, T. Streibel, R. Suntz, and H. Bockhorn, "Statistical analysis of soot volume fractions, particle number densities and particle radii in a turbulent diffusion flame," Combust. Sci. Technol. 149, 115-134 (1999).
    [CrossRef]
  24. D. J. Bryce, N. Ladommatos, and H. Zhao, "Quantitative investigation of soot distribution by laser-induced incandescence," Appl. Opt. 39, 5012-5022 (2000).
    [CrossRef]
  25. B. Axelsson, R. Collin, and P.-E. Bengtsson, "Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration," Appl. Phys. B 72, 367-372 (2001).
  26. T. Schittkowski, B. Mewes, and D. Brüggemann, "Laser-induced incandescence and Raman measurements in sooting methane and ethylene flames," Phys. Chem. Chem. Phys. 4, 2063-2071 (2002).
    [CrossRef]
  27. M. D. Smooke, M. B. Long, B. C. Connelly, M. B. Colket, and R. J. Hall, "Soot formation in laminar diffusion flames," Combust. Flame 143, 613-628 (2005).
    [CrossRef]
  28. J. P. Schwarz, R. S. Gao, D. W. Fahey, D. S. Thomson, L. A. Watts, J. C. Wilson, J. M. Reeves, M. Darbehshti, D. G. Baumgardner, G. L. Kok, S. H. Chung, M. Schulz, J. Hendricks, A. Lauer, B. Kärcher, J. G. Slowik, K. H. Rosenlof, T. L. Thompson, A. O. Langford, M. Loewenstein, and K. C. Aikin, "Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere," J. Geophys. Res. 111, D16207 (2006).
    [CrossRef]
  29. S. Will, S. Schraml, and A. Leipertz, "Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence," Opt. Lett. 20, 2342-2344 (1995).
    [CrossRef] [PubMed]
  30. S. Will, S. Schraml, K. Bader, and A. Leipertz, "Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence," Appl. Opt. 37, 5647-5658 (1998).
    [CrossRef]
  31. B. Mewes and J. M. Seitzman, "Soot volume fraction and particle size measurements with laser-induced incandescence," Appl. Opt. 36, 709-717 (1997).
    [CrossRef] [PubMed]
  32. P. Roth and A. V. Filippov, "In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission," J. Aerosol. Sci. 27, 95-104 (1996).
    [CrossRef]
  33. A. V. Filippov, M. W. Markus, and P. Roth, "In situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination," J. Aerosol Sci. 30, 71-87 (1999).
    [CrossRef]
  34. S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, "Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)," Combust. Flame 120, 439-450 (2000).
    [CrossRef]
  35. C. Allouis, F. Rosano, F. Beretta, and A. D'Alessio, "A possible radiative model for micronic carbonaceous particle sizing based on time-resolved laser-induced incandescence," Meas. Sci. Technol. 13, 401-410 (2002).
    [CrossRef]
  36. T. Lehre, B. Jungfleisch, R. Suntz, and H. Bockhorn, "Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced incandescence measurements," Appl. Opt. 42, 2021-2030 (2003).
    [CrossRef] [PubMed]
  37. V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005).
    [CrossRef]
  38. B. F. Kock, B. Tribalet, C. Schulz, and P. Roth, "Two-color time-resolved LII applied to soot particle sizing in the cylinder of a diesel engine," Combust. Flame 147, 79-92 (2006).
    [CrossRef]
  39. R. J. Santoro and C. R. Shaddix, "Laser-Induced Incandescence," in Applied Combustion Diagnostics, K. Kohse-Höinghaus, and J. B. Jeffries, eds. (Taylor and Francis, 2002), pp. 252-286.
  40. C. Schulz, B. F. Kock, M. Hofmann, H. A. Michelsen, S. Will, B. Bougie, R. Suntz, and G. J. Smallwood, "Laser-induced incandescence: recent trends and current questions," Appl. Phys. B 83, 333-354 (2006).
    [CrossRef]
  41. R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, "Soot particle measurements in diffusion flames," Combust. Flame 51, 203-218 (1983).
    [CrossRef]
  42. R. J. Santoro and J. H. Miller, "Soot particle formation in laminar diffusion flames," Langmuir 3, 244-254 (1987).
    [CrossRef]
  43. B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, "Spatially resolved measurements of soot volume fraction using laser-induced incandescence," Combust. Flame 97, 384-392 (1994).
    [CrossRef]
  44. H. A. Michelsen, "Laser-induced incandescence of flame-generated soot on a picosecond time scale," Appl. Phys. B 83, 443-448 (2006).
    [CrossRef]
  45. R. L. Vander Wal, "Laser-induced incandescence: detection issues," Appl. Opt. 35, 6548-6559 (1996).
    [CrossRef] [PubMed]
  46. C. Schoemaecker Moreau, E. Therssen, X. Mercier, J. F. Pauwels, and P. Desgroux, "Two-color laser-induced incandescence and cavity ring-down spectroscopy of sensitive and quantitative imaging of soot and PAHs in flames," Appl. Phys. B 78, 485-492 (2004).
    [CrossRef]
  47. T. R. Meyer, S. Roy, V. M. Belovich, E. Corporan, and J. R. Gord, "Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames," Appl. Opt. 44, 445-454 (2005).
    [CrossRef] [PubMed]

2006 (4)

J. P. Schwarz, R. S. Gao, D. W. Fahey, D. S. Thomson, L. A. Watts, J. C. Wilson, J. M. Reeves, M. Darbehshti, D. G. Baumgardner, G. L. Kok, S. H. Chung, M. Schulz, J. Hendricks, A. Lauer, B. Kärcher, J. G. Slowik, K. H. Rosenlof, T. L. Thompson, A. O. Langford, M. Loewenstein, and K. C. Aikin, "Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere," J. Geophys. Res. 111, D16207 (2006).
[CrossRef]

B. F. Kock, B. Tribalet, C. Schulz, and P. Roth, "Two-color time-resolved LII applied to soot particle sizing in the cylinder of a diesel engine," Combust. Flame 147, 79-92 (2006).
[CrossRef]

C. Schulz, B. F. Kock, M. Hofmann, H. A. Michelsen, S. Will, B. Bougie, R. Suntz, and G. J. Smallwood, "Laser-induced incandescence: recent trends and current questions," Appl. Phys. B 83, 333-354 (2006).
[CrossRef]

H. A. Michelsen, "Laser-induced incandescence of flame-generated soot on a picosecond time scale," Appl. Phys. B 83, 443-448 (2006).
[CrossRef]

2005 (3)

V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005).
[CrossRef]

T. R. Meyer, S. Roy, V. M. Belovich, E. Corporan, and J. R. Gord, "Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames," Appl. Opt. 44, 445-454 (2005).
[CrossRef] [PubMed]

M. D. Smooke, M. B. Long, B. C. Connelly, M. B. Colket, and R. J. Hall, "Soot formation in laminar diffusion flames," Combust. Flame 143, 613-628 (2005).
[CrossRef]

2004 (1)

C. Schoemaecker Moreau, E. Therssen, X. Mercier, J. F. Pauwels, and P. Desgroux, "Two-color laser-induced incandescence and cavity ring-down spectroscopy of sensitive and quantitative imaging of soot and PAHs in flames," Appl. Phys. B 78, 485-492 (2004).
[CrossRef]

2003 (2)

T. Lehre, B. Jungfleisch, R. Suntz, and H. Bockhorn, "Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced incandescence measurements," Appl. Opt. 42, 2021-2030 (2003).
[CrossRef] [PubMed]

G. Anstett, M. Nittmann, A. Borsutzky, and R. Wallenstein, "Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers," Appl. Phys. B 76, 833-838 (2003).
[CrossRef]

2002 (3)

P. O. Witze, "Real-time measurement of the volatile fraction of diesel particulate matter using laser-induced vaporization with elastic scattering (LIVES)," SAE Trans. 111, 661-672 (2002).

C. Allouis, F. Rosano, F. Beretta, and A. D'Alessio, "A possible radiative model for micronic carbonaceous particle sizing based on time-resolved laser-induced incandescence," Meas. Sci. Technol. 13, 401-410 (2002).
[CrossRef]

T. Schittkowski, B. Mewes, and D. Brüggemann, "Laser-induced incandescence and Raman measurements in sooting methane and ethylene flames," Phys. Chem. Chem. Phys. 4, 2063-2071 (2002).
[CrossRef]

2001 (1)

B. Axelsson, R. Collin, and P.-E. Bengtsson, "Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration," Appl. Phys. B 72, 367-372 (2001).

2000 (3)

D. J. Bryce, N. Ladommatos, and H. Zhao, "Quantitative investigation of soot distribution by laser-induced incandescence," Appl. Opt. 39, 5012-5022 (2000).
[CrossRef]

S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, "Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)," Combust. Flame 120, 439-450 (2000).
[CrossRef]

D. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, and W. D. Bachalo, "In situ real time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence," SAE Trans. 109, 1914-1925 (2000).

1999 (4)

K. Inagaki, S. Takasu, and K. Nakakita, "In-cylinder quantitative soot concentration measurement by laser-induced incandescence," SAE Trans. 108, 574-586 (1999).

D. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, and Ö. L. Gülder, "Particulate matter measurements in a diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure," SAE Trans. 108(4), 2156-2164 (1999).

A. V. Filippov, M. W. Markus, and P. Roth, "In situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination," J. Aerosol Sci. 30, 71-87 (1999).
[CrossRef]

H. Geitlinger, T. Streibel, R. Suntz, and H. Bockhorn, "Statistical analysis of soot volume fractions, particle number densities and particle radii in a turbulent diffusion flame," Combust. Sci. Technol. 149, 115-134 (1999).
[CrossRef]

1998 (1)

1997 (2)

1996 (3)

P. Roth and A. V. Filippov, "In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission," J. Aerosol. Sci. 27, 95-104 (1996).
[CrossRef]

C. R. Shaddix and K. C. Smyth, "Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames," Combust. Flame 107, 418-452 (1996).
[CrossRef]

R. L. Vander Wal, "Laser-induced incandescence: detection issues," Appl. Opt. 35, 6548-6559 (1996).
[CrossRef] [PubMed]

1995 (2)

1994 (4)

F. Cignoli, S. Benecchi, and G. Zizak, "Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames," Appl. Opt. 33, 5778-5782 (1994).
[CrossRef] [PubMed]

R. L. Vander Wal and K. J. Weiland, "Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction," Appl. Phys. B 59, 445-452 (1994).
[CrossRef]

J. A. Pinson, T. Ni, and T. A. Litzinger, "Quantitative imaging study of the effects of intake air temperature on soot evaluation in an optically-accessible D. I. diesel engine," SAE Trans. 103, 1773-1788 (1994).

B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, "Spatially resolved measurements of soot volume fraction using laser-induced incandescence," Combust. Flame 97, 384-392 (1994).
[CrossRef]

1993 (3)

N. P. Tait and D. A. Greenhalgh, "PLIF imaging of fuel fraction in practical devices and LII imaging of soot," Ber. Bunsenges. Phys. Chem. 97, 1619-1625 (1993).

C. Espey and J. E. Dec, "Diesel engine combustion studies in a newly designed optical-access engine using high speed visualization and 2-D laser imaging," SAE Trans. 102, 703-723 (1993).

J. A. Pinson, D. L. Mitchell, and R. J. Santoro, "Quantitative, planar soot measurements in a D. I. diesel engine using laser-induced incandescence and light scattering," Proc. SAE , SAE Paper No. 932650 (1993).

1992 (3)

J. E. Dec, "Soot distribution in a D. I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity," SAE Trans. 101, 101-112 (1992).

A. Caprara and G. C. Reali, "Time varying M2 in Q-switched lasers," Opt. Quantum Electron. 24, S1001-S1009 (1992).
[CrossRef]

A. Caprara and G. C. Reali, "Time-resolved M2 of nanosecond pulses from a Q-switched variable-reflectivity-mirror Nd:YAG laser," Opt. Lett. 17, 414-416 (1992).
[CrossRef] [PubMed]

1991 (1)

J. E. Dec, A. O. zur Loye, and D. L. Siebers, "Soot distribution in a D. I. diesel engine using 2-D laser-induced incandescence imaging," SAE Trans. 100, 277-288 (1991).

1990 (1)

S. De Silvestri, V. Magni, O. Svelto, and G. Valentini, "Lasers with super-Gaussian mirrors," IEEE J. Quantum Electron. 26, 1500-1509 (1990).
[CrossRef]

1988 (1)

K. J. Snell, N. McCarthy, and M. Piché, "Single transverse mode oscillation from an unstable resonator Nd:YAG laser using a variable reflectivity mirror," Opt. Commun. 65, 377-382 (1988).
[CrossRef]

1987 (1)

R. J. Santoro and J. H. Miller, "Soot particle formation in laminar diffusion flames," Langmuir 3, 244-254 (1987).
[CrossRef]

1985 (1)

1983 (1)

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, "Soot particle measurements in diffusion flames," Combust. Flame 51, 203-218 (1983).
[CrossRef]

Appl. Opt. (8)

F. Cignoli, S. Benecchi, and G. Zizak, "Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames," Appl. Opt. 33, 5778-5782 (1994).
[CrossRef] [PubMed]

T. Ni, J. A. Pinson, S. Gupta, and R. J. Santoro, "Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence," Appl. Opt. 34, 7083-7091 (1995).
[CrossRef] [PubMed]

D. J. Bryce, N. Ladommatos, and H. Zhao, "Quantitative investigation of soot distribution by laser-induced incandescence," Appl. Opt. 39, 5012-5022 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, and A. Leipertz, "Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence," Appl. Opt. 37, 5647-5658 (1998).
[CrossRef]

B. Mewes and J. M. Seitzman, "Soot volume fraction and particle size measurements with laser-induced incandescence," Appl. Opt. 36, 709-717 (1997).
[CrossRef] [PubMed]

T. Lehre, B. Jungfleisch, R. Suntz, and H. Bockhorn, "Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced incandescence measurements," Appl. Opt. 42, 2021-2030 (2003).
[CrossRef] [PubMed]

R. L. Vander Wal, "Laser-induced incandescence: detection issues," Appl. Opt. 35, 6548-6559 (1996).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, V. M. Belovich, E. Corporan, and J. R. Gord, "Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames," Appl. Opt. 44, 445-454 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (6)

C. Schoemaecker Moreau, E. Therssen, X. Mercier, J. F. Pauwels, and P. Desgroux, "Two-color laser-induced incandescence and cavity ring-down spectroscopy of sensitive and quantitative imaging of soot and PAHs in flames," Appl. Phys. B 78, 485-492 (2004).
[CrossRef]

C. Schulz, B. F. Kock, M. Hofmann, H. A. Michelsen, S. Will, B. Bougie, R. Suntz, and G. J. Smallwood, "Laser-induced incandescence: recent trends and current questions," Appl. Phys. B 83, 333-354 (2006).
[CrossRef]

H. A. Michelsen, "Laser-induced incandescence of flame-generated soot on a picosecond time scale," Appl. Phys. B 83, 443-448 (2006).
[CrossRef]

B. Axelsson, R. Collin, and P.-E. Bengtsson, "Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration," Appl. Phys. B 72, 367-372 (2001).

R. L. Vander Wal and K. J. Weiland, "Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction," Appl. Phys. B 59, 445-452 (1994).
[CrossRef]

G. Anstett, M. Nittmann, A. Borsutzky, and R. Wallenstein, "Experimental investigation and numerical simulation of the spatio-temporal dynamics of nanosecond pulses in Q-switched Nd:YAG lasers," Appl. Phys. B 76, 833-838 (2003).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

N. P. Tait and D. A. Greenhalgh, "PLIF imaging of fuel fraction in practical devices and LII imaging of soot," Ber. Bunsenges. Phys. Chem. 97, 1619-1625 (1993).

Combust. Flame (6)

S. Schraml, S. Dankers, K. Bader, S. Will, and A. Leipertz, "Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)," Combust. Flame 120, 439-450 (2000).
[CrossRef]

B. F. Kock, B. Tribalet, C. Schulz, and P. Roth, "Two-color time-resolved LII applied to soot particle sizing in the cylinder of a diesel engine," Combust. Flame 147, 79-92 (2006).
[CrossRef]

C. R. Shaddix and K. C. Smyth, "Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames," Combust. Flame 107, 418-452 (1996).
[CrossRef]

M. D. Smooke, M. B. Long, B. C. Connelly, M. B. Colket, and R. J. Hall, "Soot formation in laminar diffusion flames," Combust. Flame 143, 613-628 (2005).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, and R. J. Santoro, "Spatially resolved measurements of soot volume fraction using laser-induced incandescence," Combust. Flame 97, 384-392 (1994).
[CrossRef]

R. J. Santoro, H. G. Semerjian, and R. A. Dobbins, "Soot particle measurements in diffusion flames," Combust. Flame 51, 203-218 (1983).
[CrossRef]

Combust. Sci. Technol. (1)

H. Geitlinger, T. Streibel, R. Suntz, and H. Bockhorn, "Statistical analysis of soot volume fractions, particle number densities and particle radii in a turbulent diffusion flame," Combust. Sci. Technol. 149, 115-134 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. De Silvestri, V. Magni, O. Svelto, and G. Valentini, "Lasers with super-Gaussian mirrors," IEEE J. Quantum Electron. 26, 1500-1509 (1990).
[CrossRef]

J. Aerosol Sci. (1)

A. V. Filippov, M. W. Markus, and P. Roth, "In situ characterization of ultrafine particles by laser-induced incandescence: sizing and particle structure determination," J. Aerosol Sci. 30, 71-87 (1999).
[CrossRef]

J. Aerosol. Sci. (1)

P. Roth and A. V. Filippov, "In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission," J. Aerosol. Sci. 27, 95-104 (1996).
[CrossRef]

J. Geophys. Res. (1)

J. P. Schwarz, R. S. Gao, D. W. Fahey, D. S. Thomson, L. A. Watts, J. C. Wilson, J. M. Reeves, M. Darbehshti, D. G. Baumgardner, G. L. Kok, S. H. Chung, M. Schulz, J. Hendricks, A. Lauer, B. Kärcher, J. G. Slowik, K. H. Rosenlof, T. L. Thompson, A. O. Langford, M. Loewenstein, and K. C. Aikin, "Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere," J. Geophys. Res. 111, D16207 (2006).
[CrossRef]

Langmuir (1)

R. J. Santoro and J. H. Miller, "Soot particle formation in laminar diffusion flames," Langmuir 3, 244-254 (1987).
[CrossRef]

Meas. Sci. Technol. (2)

C. Allouis, F. Rosano, F. Beretta, and A. D'Alessio, "A possible radiative model for micronic carbonaceous particle sizing based on time-resolved laser-induced incandescence," Meas. Sci. Technol. 13, 401-410 (2002).
[CrossRef]

V. Krüger, C. Wahl, R. Hadef, K. P. Geigle, W. Stricker, and M. Aigner, "Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution," Meas. Sci. Technol. 16, 1477-1486 (2005).
[CrossRef]

Opt. Commun. (1)

K. J. Snell, N. McCarthy, and M. Piché, "Single transverse mode oscillation from an unstable resonator Nd:YAG laser using a variable reflectivity mirror," Opt. Commun. 65, 377-382 (1988).
[CrossRef]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

A. Caprara and G. C. Reali, "Time varying M2 in Q-switched lasers," Opt. Quantum Electron. 24, S1001-S1009 (1992).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

T. Schittkowski, B. Mewes, and D. Brüggemann, "Laser-induced incandescence and Raman measurements in sooting methane and ethylene flames," Phys. Chem. Chem. Phys. 4, 2063-2071 (2002).
[CrossRef]

Proc. SAE (1)

J. A. Pinson, D. L. Mitchell, and R. J. Santoro, "Quantitative, planar soot measurements in a D. I. diesel engine using laser-induced incandescence and light scattering," Proc. SAE , SAE Paper No. 932650 (1993).

SAE Trans. (8)

J. A. Pinson, T. Ni, and T. A. Litzinger, "Quantitative imaging study of the effects of intake air temperature on soot evaluation in an optically-accessible D. I. diesel engine," SAE Trans. 103, 1773-1788 (1994).

K. Inagaki, S. Takasu, and K. Nakakita, "In-cylinder quantitative soot concentration measurement by laser-induced incandescence," SAE Trans. 108, 574-586 (1999).

D. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, and Ö. L. Gülder, "Particulate matter measurements in a diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure," SAE Trans. 108(4), 2156-2164 (1999).

D. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, D. J. Clavel, W. L. Chippior, F. Liu, Ö. L. Gülder, and W. D. Bachalo, "In situ real time characterization of particulate emissions from a diesel engine exhaust by laser-induced incandescence," SAE Trans. 109, 1914-1925 (2000).

P. O. Witze, "Real-time measurement of the volatile fraction of diesel particulate matter using laser-induced vaporization with elastic scattering (LIVES)," SAE Trans. 111, 661-672 (2002).

J. E. Dec, A. O. zur Loye, and D. L. Siebers, "Soot distribution in a D. I. diesel engine using 2-D laser-induced incandescence imaging," SAE Trans. 100, 277-288 (1991).

J. E. Dec, "Soot distribution in a D. I. diesel engine using 2-D imaging of laser-induced incandescence, elastic scattering, and flame luminosity," SAE Trans. 101, 101-112 (1992).

C. Espey and J. E. Dec, "Diesel engine combustion studies in a newly designed optical-access engine using high speed visualization and 2-D laser imaging," SAE Trans. 102, 703-723 (1993).

Other (2)

A. E. Siegman, Lasers (University Science Books, 1986).

R. J. Santoro and C. R. Shaddix, "Laser-Induced Incandescence," in Applied Combustion Diagnostics, K. Kohse-Höinghaus, and J. B. Jeffries, eds. (Taylor and Francis, 2002), pp. 252-286.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Spatial beam profiles of the full laser beam at (a) 1064 and (b) 532   nm . The spatial profiles are shown with cross sectional cuts through the profile centers. The scale of the images is corrected for reduction in the beam size at the detection region by a 2:1 telescope. The 1-σ standard deviation of the intensity from the mean over a single-shot profile was ± 31.2 % for the 1064   nm beam and ± 31.1 % for the 532   nm beam.

Fig. 2
Fig. 2

Experimental setup for the laser spatiotemporal profile measurements. A solid line shows the common beam path for 1064 and 532   nm ; dashed lines represent beam path for the 1064   nm beam, and dotted lines show 532   nm beam paths. The 1064   nm beam is primarily attenuated by a sequence of four 3° wedges, and the 532   nm beam is additionally attenuated by relatively low reflectivity from the front face of a 1064   nm dichroic mirror directing both wavelengths to the diode.

Fig. 3
Fig. 3

Experimental setup for the LII temporal profile measurements. The optical layout is shown for the experiments using the 1064   nm beam. The layout for the 532   nm beam was similar but did not include the first half-wave plate and thin-film polarizer. The laser layout was the same as that shown in Fig. 2.

Fig. 4
Fig. 4

Spatial beam profiles of the apertured laser beam at (a) 1064   nm and (b) 532   nm . The spatial profiles of the beam with a 2   mm aperture are shown with cross sectional cuts through the profile centers. The scale of the images is corrected for reduction of the beam size at the detection region by a 2:1 telescope. The 1 - σ standard deviation of the intensity from the mean over a single-shot profile was ± 13.9 % for the 1064   nm beam and ± 11.9 % for the 532   nm beam.

Fig. 5
Fig. 5

Dependence of pulse timing on radial position. Data are shown for five temporal profiles at selected horizontal positions, starting at the center, along the horizontal centerline of the 532   nm beam. The peak of each curve is scaled to the top of the graph.

Fig. 6
Fig. 6

Dependence of pulse timing on radial position. The time difference between the temporal profile at the center of the beam and at a position along the vertical or horizontal centerlines is shown as a function of radial position. The resulting spatiotemporal profiles are shown for the (a) 1064   nm and (b) 532   nm beams with no spatial filtering.

Fig. 7
Fig. 7

Dependence of pulse duration on position. The FWHM is shown as a function of position for the (a) 1064   nm and (b) 532   nm beams at selected spatial locations, spanning the entire radial range of the pulse.

Fig. 8
Fig. 8

Evolution of the beam profile with time. The intensity of the beam is shown along the horizontal and vertical centerlines at selected times for (a) 1064   nm and (b) 532   nm . Time t = 0 ns is set at the peak intensity of the pulse. Each graph has been scaled relative to t = 0 .

Fig. 9
Fig. 9

Spatiotemporal profiles comparing the effect from a well-centered 2   mm aperture (top) to a poorly centered 2   mm aperture (bottom). The time difference between the leading edge of the pulse from the earliest part of the beam and from positions along the vertical or horizontal centerlines is shown as a function of radial position. The resulting spatiotemporal profiles are shown for the (a) 1064   nm and (b) 532   nm beams. The temporal spread is reduced to < 0.2   ns .

Fig. 10
Fig. 10

LII temporal profiles (solid curves) are shown for (a) 532   nm and (b) 1064   nm relative to the laser temporal profile (dotted curves) for selected fluences. Measurements were made using the beam with a 2   mm spatial filter. Curves are scaled to the top of the graph in each panel.

Fig. 11
Fig. 11

Influence of gate timing and pulse-time delay on LII signal. The integrated LII signal is shown for a laser fluence of 0.3 J / cm 2 as a function of laser pulse time delay for a gate width of 20   ns , either centered on the laser pulse at the center of the beam ( 0   ns delay), i.e., 0 20   ns in Fig. 10, or delayed by 20   ns , i.e., 20 40   ns in Fig. 10. Results are shown for 532 and 1064   nm and do not include the effects of changes in pulse duration.

Fig. 12
Fig. 12

Influence of aperture placement on the LII temporal profiles. The solid curves in (a) and (b) are the same and demonstrate LII temporal profiles measured using a well-positioned 2 mm aperture for selected laser fluences at 532   nm . LII temporal profiles are also shown from (a) the full beam (with no aperture) (dotted curves) and (b) a beam with a poorly placed 3   mm aperture (dashed curves). Curves are scaled to the top of the graph in each panel.

Metrics