Abstract

A diode side-pumped acousto-optic Q-switched Nd:YAP laser operating at 1.3414μm has been reported. The stabilities of resonators and the influence of the temperature of cooling water on output power have been experimentally investigated. The average output powers and pulse widths with different couplers and repetition rates have also been measured and analyzed. Under the repetition rate of 5  kHz, a maximum average output power of 47.5  W was obtained with an optical–optical conversion efficiency of 8.6% and a slope efficiency of 20.2%. The peak power and the pulse width were 48.8  kW and 195  ns FWHM. The beam quality factors M2 directed along the a and c axes were 22 and 28, respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. P. Boquillon, O. Musset, H. Guillet, and S. Roy, "High efficiency flashlamp-pumped lasers at 1.3 μm with Nd-doped crystals--scientific and medical applications," in Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, 1999), p. 126.
  2. H. G. Guillet, "Pulsed emission laser use in the medical field," U.S. patent 6,050,991 (18 April 2000).
  3. H. Y. Shen, G. Zhang, C. H. Huang, R. R. Zeng, and M. Wei, "High power 1341.4 nm Nd:YAlO3 CW laser and its performances," Opt. Laser Technol. 35, 69-72 (2003).
    [CrossRef]
  4. E. Lafond and A. Hirth, "Optimization of a single mode Q-switched oscillator at 1.34 μm," Opt. Commun. 152, 329-334 (1998).
    [CrossRef]
  5. H. Shen, Y. Zhou, R. Zeng, G. Yu, Q. Ye, C. Huang, X. Huang, and H. Liao, "High power 1.3414 μm Nd:YAP cw laser," Opt. Laser Technol. 18, 193-197 (1986).
    [CrossRef]
  6. C. H. Huang, G. Zhang, Y. Wei, and L. X. Huang, "1.3414 μm Nd:YAP pulse laser in Q-switched mode," Opt. Commun. 260, 248-250 (2006).
    [CrossRef]
  7. H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, "Comparison of simultaneous multiple wavelength lasing in various neodymium host crystals at transitions from 4F3/2-4I11/2 and 4F3/2-4I13/2," Appl. Phys. Lett. 56, 1937-1938 (1990).
    [CrossRef]
  8. S. Singh, R. G. Smith, and L. G. Van Vitert, "Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature," Phys. Rev. B 10, 2566-2572 (1974).
    [CrossRef]
  9. Y. Inoue and S. Fujikawa, "Diode-pumped Nd:YAG laser producing 122 W CW power at 1.319 μm," IEEE J. Quantum Electron. 36, 751-756 (2000).
    [CrossRef]
  10. R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Gamier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, "Nd doped crystals for medical laser applications," Opt. Mater. 8, 109-119 (1997).
    [CrossRef]
  11. J. Šulc, H. Jelínková, J. K. Jabczyński, W. Zendzian, J. Kwiatkowski, K. Nejezchleb, and V. Škoda, "Comparison of diode-side-pumped Nd:YAG and Nd:YAP laser," Proc. SPIE 5707, 325-334 (2005).
    [CrossRef]
  12. W. Koechner, Solid State Laser Engineering (Springer-Verlag, 1999).
  13. G. Zhang, H. Shen, R. Zeng, C. Huang, W. Lin, and J. Huang, "The study of 1341.4 nm Nd:YAlO3 laser intracavity frequency doubling by LiB3O5," Opt. Commun. 183, 461-466 (2000).
    [CrossRef]
  14. Y. P. Zhou, H. Y. Shen, R. R. Zeng, G. F. Yu, C. H. Huang, and Z. D. Zeng, "A method for calculating optomechanical coefficient of laser materials," Chin. J. Lasers 17, 138-140 (1990).
  15. L. Schearer and M. Leduc, "Tuning characteristics and new laser lines in an Nd:YAP CW laser," IEEE J. Quantum Electron. 22, 756-758 (1986).
    [CrossRef]
  16. O. Guy, V. Kubecek, and A. Barthelemy, "Mode-locked diode-pumped Nd:YAP laser," Opt. Commun. 130, 41-43 (1996).
    [CrossRef]
  17. M. Boucher, O. Musset, J. P. Boquillon, and E. Georgiou, "Multiwatt CW diode end-pumped Nd:YAP laser at 1.08 and 1.34 μm: influence of Nd doping level," Opt. Commun. 212, 139-148 (2002).
    [CrossRef]
  18. H. Zhu, C. Huang, G. Zhang, Y. Wei, L. Huang, J. Chen, W. Chen, and Z. Chen, "High-power CW diode-side-pumped 1341 nm Nd:YAP laser," Opt. Commun. 270, 296-300 (2007).
    [CrossRef]

2007 (1)

H. Zhu, C. Huang, G. Zhang, Y. Wei, L. Huang, J. Chen, W. Chen, and Z. Chen, "High-power CW diode-side-pumped 1341 nm Nd:YAP laser," Opt. Commun. 270, 296-300 (2007).
[CrossRef]

2006 (1)

C. H. Huang, G. Zhang, Y. Wei, and L. X. Huang, "1.3414 μm Nd:YAP pulse laser in Q-switched mode," Opt. Commun. 260, 248-250 (2006).
[CrossRef]

2005 (1)

J. Šulc, H. Jelínková, J. K. Jabczyński, W. Zendzian, J. Kwiatkowski, K. Nejezchleb, and V. Škoda, "Comparison of diode-side-pumped Nd:YAG and Nd:YAP laser," Proc. SPIE 5707, 325-334 (2005).
[CrossRef]

2003 (1)

H. Y. Shen, G. Zhang, C. H. Huang, R. R. Zeng, and M. Wei, "High power 1341.4 nm Nd:YAlO3 CW laser and its performances," Opt. Laser Technol. 35, 69-72 (2003).
[CrossRef]

2002 (1)

M. Boucher, O. Musset, J. P. Boquillon, and E. Georgiou, "Multiwatt CW diode end-pumped Nd:YAP laser at 1.08 and 1.34 μm: influence of Nd doping level," Opt. Commun. 212, 139-148 (2002).
[CrossRef]

2000 (3)

Y. Inoue and S. Fujikawa, "Diode-pumped Nd:YAG laser producing 122 W CW power at 1.319 μm," IEEE J. Quantum Electron. 36, 751-756 (2000).
[CrossRef]

H. G. Guillet, "Pulsed emission laser use in the medical field," U.S. patent 6,050,991 (18 April 2000).

G. Zhang, H. Shen, R. Zeng, C. Huang, W. Lin, and J. Huang, "The study of 1341.4 nm Nd:YAlO3 laser intracavity frequency doubling by LiB3O5," Opt. Commun. 183, 461-466 (2000).
[CrossRef]

1998 (1)

E. Lafond and A. Hirth, "Optimization of a single mode Q-switched oscillator at 1.34 μm," Opt. Commun. 152, 329-334 (1998).
[CrossRef]

1997 (1)

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Gamier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, "Nd doped crystals for medical laser applications," Opt. Mater. 8, 109-119 (1997).
[CrossRef]

1996 (1)

O. Guy, V. Kubecek, and A. Barthelemy, "Mode-locked diode-pumped Nd:YAP laser," Opt. Commun. 130, 41-43 (1996).
[CrossRef]

1990 (2)

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, "Comparison of simultaneous multiple wavelength lasing in various neodymium host crystals at transitions from 4F3/2-4I11/2 and 4F3/2-4I13/2," Appl. Phys. Lett. 56, 1937-1938 (1990).
[CrossRef]

Y. P. Zhou, H. Y. Shen, R. R. Zeng, G. F. Yu, C. H. Huang, and Z. D. Zeng, "A method for calculating optomechanical coefficient of laser materials," Chin. J. Lasers 17, 138-140 (1990).

1986 (2)

L. Schearer and M. Leduc, "Tuning characteristics and new laser lines in an Nd:YAP CW laser," IEEE J. Quantum Electron. 22, 756-758 (1986).
[CrossRef]

H. Shen, Y. Zhou, R. Zeng, G. Yu, Q. Ye, C. Huang, X. Huang, and H. Liao, "High power 1.3414 μm Nd:YAP cw laser," Opt. Laser Technol. 18, 193-197 (1986).
[CrossRef]

1974 (1)

S. Singh, R. G. Smith, and L. G. Van Vitert, "Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature," Phys. Rev. B 10, 2566-2572 (1974).
[CrossRef]

Appl. Phys. Lett. (1)

H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, "Comparison of simultaneous multiple wavelength lasing in various neodymium host crystals at transitions from 4F3/2-4I11/2 and 4F3/2-4I13/2," Appl. Phys. Lett. 56, 1937-1938 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. Inoue and S. Fujikawa, "Diode-pumped Nd:YAG laser producing 122 W CW power at 1.319 μm," IEEE J. Quantum Electron. 36, 751-756 (2000).
[CrossRef]

L. Schearer and M. Leduc, "Tuning characteristics and new laser lines in an Nd:YAP CW laser," IEEE J. Quantum Electron. 22, 756-758 (1986).
[CrossRef]

Opt. Commun. (6)

O. Guy, V. Kubecek, and A. Barthelemy, "Mode-locked diode-pumped Nd:YAP laser," Opt. Commun. 130, 41-43 (1996).
[CrossRef]

M. Boucher, O. Musset, J. P. Boquillon, and E. Georgiou, "Multiwatt CW diode end-pumped Nd:YAP laser at 1.08 and 1.34 μm: influence of Nd doping level," Opt. Commun. 212, 139-148 (2002).
[CrossRef]

H. Zhu, C. Huang, G. Zhang, Y. Wei, L. Huang, J. Chen, W. Chen, and Z. Chen, "High-power CW diode-side-pumped 1341 nm Nd:YAP laser," Opt. Commun. 270, 296-300 (2007).
[CrossRef]

C. H. Huang, G. Zhang, Y. Wei, and L. X. Huang, "1.3414 μm Nd:YAP pulse laser in Q-switched mode," Opt. Commun. 260, 248-250 (2006).
[CrossRef]

E. Lafond and A. Hirth, "Optimization of a single mode Q-switched oscillator at 1.34 μm," Opt. Commun. 152, 329-334 (1998).
[CrossRef]

G. Zhang, H. Shen, R. Zeng, C. Huang, W. Lin, and J. Huang, "The study of 1341.4 nm Nd:YAlO3 laser intracavity frequency doubling by LiB3O5," Opt. Commun. 183, 461-466 (2000).
[CrossRef]

Opt. Laser Technol. (2)

H. Shen, Y. Zhou, R. Zeng, G. Yu, Q. Ye, C. Huang, X. Huang, and H. Liao, "High power 1.3414 μm Nd:YAP cw laser," Opt. Laser Technol. 18, 193-197 (1986).
[CrossRef]

H. Y. Shen, G. Zhang, C. H. Huang, R. R. Zeng, and M. Wei, "High power 1341.4 nm Nd:YAlO3 CW laser and its performances," Opt. Laser Technol. 35, 69-72 (2003).
[CrossRef]

Opt. Mater. (1)

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Gamier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, "Nd doped crystals for medical laser applications," Opt. Mater. 8, 109-119 (1997).
[CrossRef]

Phys. Rev. B (1)

S. Singh, R. G. Smith, and L. G. Van Vitert, "Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature," Phys. Rev. B 10, 2566-2572 (1974).
[CrossRef]

Proc. SPIE (1)

J. Šulc, H. Jelínková, J. K. Jabczyński, W. Zendzian, J. Kwiatkowski, K. Nejezchleb, and V. Škoda, "Comparison of diode-side-pumped Nd:YAG and Nd:YAP laser," Proc. SPIE 5707, 325-334 (2005).
[CrossRef]

Other (4)

W. Koechner, Solid State Laser Engineering (Springer-Verlag, 1999).

J. P. Boquillon, O. Musset, H. Guillet, and S. Roy, "High efficiency flashlamp-pumped lasers at 1.3 μm with Nd-doped crystals--scientific and medical applications," in Conference on Lasers and Electro-Optics (CLEO/US) (Optical Society of America, 1999), p. 126.

H. G. Guillet, "Pulsed emission laser use in the medical field," U.S. patent 6,050,991 (18 April 2000).

Y. P. Zhou, H. Y. Shen, R. R. Zeng, G. F. Yu, C. H. Huang, and Z. D. Zeng, "A method for calculating optomechanical coefficient of laser materials," Chin. J. Lasers 17, 138-140 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: (a) cross section of the diode side-pumping module and (b) experimental arrangement.

Fig. 2
Fig. 2

(Color online) Relative curves of the cw output power versus pump power with the different resonator configurations.

Fig. 3
Fig. 3

(Color online) Relative curves of the cw output power versus pump power at a different temperature of cooling water.

Fig. 4
Fig. 4

(Color online) Relative curves of ln   R and threshold P th (R is the reflectivity of the coupler).

Fig. 5
Fig. 5

(Color online) Relative curves of the output power and pulse width versus the transmission of couplers under the repetition rate of 5   kHz and the pump power of 555   W .

Fig. 6
Fig. 6

(Color online) Relative curves of the output power versus pump power in the cw and Q-switched mode.

Fig. 7
Fig. 7

(Color online) Relative curves of the peak power and pulse width versus repetition rate at the pump power of 555   W .

Fig. 8
Fig. 8

Temporal profile of a single pulse.

Tables (1)

Tables Icon

Table 1 Optical Parameters and Thermal Conductivities of Various Neodymium Doped Crystals from 4F3∕24I13∕2 Transition

Metrics